• Title/Summary/Keyword: lateral slope

Search Result 209, Processing Time 0.027 seconds

Development of safety-Based Guidelines for Cost-Effective Utility Pole Treatment along Highway Rights-of-way

  • 김정현
    • Proceedings of the KOR-KST Conference
    • /
    • 1997.12b
    • /
    • pp.35-72
    • /
    • 1997
  • This study was conducted to develop a methodology to predict utility pole accident rates and to evaluate cost-effectiveness for safety improvement for utility pole accidents. The utility pole accident rate prediction model was based on the encroachment rate approach introduced in the Transportation Research Board special Report 214. The utility pole accident rate on a section of highway depends on the roadside encroachment rate and the lateral extent of encroachment. The encroachment rate is influenced by the horizontal and vertical alignment of the highway as well as traffic volume and mean speed. The lateral extent of encroachment is affected by the horizontal and vertical alignment, the mean speed and the roadside slope. An analytical method to generate the probability distribution function for the lateral extent of encroachment was developed for six kinds of encroachment types by the horizontal alignment and encroachment direction. The encroachment rate was calibrated with the information on highway and roadside conditions and the utility pole accident records collected on the sections of 55mph speed limit of the State Trunk Highway 12 in Wisconsin. The encroachment rate on tangent segment was calibrated as a function of traffic volume with the actual average utility pole accident rates by traffic volume strategies. The adjustment factors for horizontal and vertical alignment were when derived by comparing the actual average utility pole accident rates to the estimations from the model calibrated for tangent and level sections. A computerized benefit-cost analysis procedure was then developed as a means of evaluating alternative countermeasures. The program calculates the benefit-cost ratio and the percent of reduction of utility pole accidents resulting from the implementation of a safety improvement. This program can be used to develop safety improvement alternatives for utility pole accidents when a predetermined performance level is specified.

  • PDF

The Slope Stabilization of Solid Waste Landfill Liner System (폐기물매립장의 사면차수체계 안정화 연구)

  • Shin, Eunchul;Kim, Jongin;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.21-28
    • /
    • 2009
  • As the natural aggregates such as sand and clay are getting exhausted, the quantity of utilizing geosynthetics is being increased in the solid waste landfill. Especially, the waste landfills have been constructed at the gorge in the mountainous area and reclaimed land from the sea in the Korean Peninsula. Those areas are not favorable for construction of waste landfill in geotechnical engineering aspect. In this study, the frictional characteristics of geosynthetics that used in the waste landfill were estimated. Then, the studies of the behavior of geosynthetics and stability of LDCRS (Leachate Detection, Collection, and Removal System) of side slope were conducted in the waste landfill by means of the pilot test, and numerical analysis. Geocomposite which is combined type or separated type is influenced on the strain itself, and also implicated in the stress and strain of geomembrane at the lower layer. The strain on the combined type of geocomposite is about 50% smaller than that of the separated type at the side slope. The lateral displacement and settlement of top at the slope with the separated type are three times greater than that of the combined type. In the numerical analysis, discontinuous plans in between ground and geosynthetic, geosynthetic and geosynthetic, goesynthetic and waste have been modeled with the interface element. The results gave a good agreement with the field large-scale model test. The relative displacements of geosynthetics were also investigated and hence the interface modeling of liner system is appropriate for analysis of geosynthetics liner system in the waste landfill.

  • PDF

A Study on the Prediction of Hard and Soft Tissue Changes after Setback Genioplasty (후진 이부성형술의 경조직과 연조직 측모 변화 예측에 관한 연구)

  • Yang, Jung-Eun;Kim, Il-Kyu;Cho, Hyun-Young;Ju, Sang-Hyun;Pyeon, Young-Hoon;Jung, Bum-Sang;Pae, Sang-Pill;Cho, Hyun-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.413-420
    • /
    • 2012
  • Purpose: The purpose of this setback genioplasty study is to develop a prediction method for the calculated osteotomy angle using horizontal and vertical changes as well as to evaluate the proportion of hard and soft tissue changes. Methods: Twelve patients who had received setback genioplasty with other maxillofacial surgery were examined. Three lateral cephalograms were taken just before surgery, immediately after surgery, and 3 months later surgery. A reference line was established to the reference point of the inner most point of the lingual symphysis cortex, incisor tip, and 2nd molar cusp tip. Measuring was conducted from pogonion (Pg), menton (Me), labrale inferius (Li), Mentolabial fold, soft tissue pogonion (Pg'), and soft tissue menton (Me') to the reference lines. Results: In setback genioplasty, the skeletal Pg moved posteriorly 5.07 mm. The ratios of soft tissue to hard tissue movement were 36% posteriorly and 62% inferiorly at Pg', 67% posteriorly and 104% inferiorly at Me', and 34% anteriorly and 164% posteriorly at Li. In reduction & setback genioplasty, skeletal Pg moved posteriorly 4.63 mm and skeletal Me moved superiorly 3.63 mm. The ratios of soft tissue to hard tissue movement were 76% posteriorly and 18% superiorly at Pg', 68% posteriorly and 42% superiorly at Me', and 44% anteriorly, 124% posteriorly at Li. The calculated mean slope angle, based on ${\Delta}H/{\Delta}V$ ratio, was 61.25 and the measured mean slope angle was 60.17. Thus, the calculated and measured slope angles have a similarity. Conclusion: In setback genioplasty, soft tissue moves posteriorly and inferiorly. In particular, at the Me' and Pg', the inferior movement of the soft tissue is greater than the posterior movement. Also, the predictable results (measured slope angle) after operation can be achieved by the calculated slope angle. Thus, the relationship of soft and hard tissue changes must be considered as the results are predictable.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.

특정사례사면 해석 결과 및 평가

  • Baek, Gyu-Ho;O, Se-Bung;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.25-33
    • /
    • 1991
  • The slope stability analysis of Carsington dam is performed, considering the effects of pore water pressure, slip surface configuration, lateral stress and various shear strengths. Without yellow clay layer, the Bowles' and STABR programs were used to find the circular slip surface which has the maximum safety factor. At last using the Morgenstern-Price method, the effects of rainfall and strength of yellow clay were mainly considered in the back analyses after failure. It was found that (1) the potential slip was not predicted in the analysis based on the modified Bishop method without considering the yellow clay layer, and (2) the crllapse of dam had been occurred according to the critical shear strength of the yellow clay and pore water pressure increase.

  • PDF

Migration Characteristics in Sine-Wave Type Rivers

  • Cha, Young-Kee;Pai, Dong-Man;Lee, Jong-Seok
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.81-92
    • /
    • 1993
  • This paper presents a model on the migration characteristics which is developed by using the equations for conservation of mass, momentum, and for lateral stability of the streambed. This model enables prediction of the magnitude the location of near-bank bed scour as well as rates and direction of meander migration in the sine-wave type revers (SWR) of small sinuosity. It is evident from this study that the transverse bed slope factor B' and transverse mass flux factor play significant roles in predicting migration characteristics, and their values of B'=4.0 and $\alpha$= 0.4 seem reasonable. This model will produce a useful quidelines in planning, design, construction, and development of SWR basin projects.

  • PDF

Migration characteristics with Forms of Channels and Bed Conditions (수로의 형상과 하상조건에 따른 이행특성)

  • 차영기;이종석
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.103-114
    • /
    • 1993
  • Migration characteristics with forms of channels and bed conditions are studied by constant-radius curve (CRC), sine-generated curve (SGC) and small-wave theory (SWT) method. For channels which are meandering and of which bed conditions are of coarse materials, transverse bed slope, depth and velocity distributions are predicted by CRC and SGC method, and the results are compared with measured field data, And for fine bed-materials of the sinuous channels, lateral and downvalley migration rates are computed by SWT method. It is confirmed from this investigation that transverse mass-flux factor plays significant roles in determining of magnitude and direction of meander migration.

  • PDF

Investigation of Safety and Design of Precast Concrete Modular Building (건축용 프리캐스트 콘크리트 모듈의 설계 및 안전성 검토)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • The purpose of this study is to develop precast concrete modules that can be used as a booth and a single-story building with a large space. This precast concrete module is originally designed to have a hexagonal facade when the upper and lower parts, which are symmetrical about horizontal connection line, are combined. A structural design was conducted to ensure structural safety of these precast concrete modules and to extend the slope of the inclined members as far as possible. Then the finite element analysis was performed to estimate the lateral and vertical deflection of complete precast concrete modular structures. And to verify the structural safety of these precast concrete modules, weight loading tests were conducted on the upper and lower modules respectively.

Seismic Design of Structures with Knee Braces (knee brace가 설치된 구조물의 내진설계)

  • 김진구;서영일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.274-281
    • /
    • 2002
  • In this study a analytical model for a structure with buckling-restrained unbonded knee-braces is proposed, and a performance-based seismic design procedure for such a system Is provided. The proposed structure system has advantage of simplifying the structural design procedure in that the hinge-connected main structural members, such as beams and columns, are designed only for gravity loads, and all the lateral seismic load is resisted by the braces. The design procedure is based on the concept of equivalent damping, and is implemented to the capacity spectrum method. Parametric study is performed with design variables such as yield stress and cross-sectional area of knee-braces to find out proper slope of the braces.

  • PDF

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

  • Kwon, Wookhyun;Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2015
  • For highly scalable NAND flash memory applications, a compact ($4F^2/cell$) nonvolatile memory architecture is proposed and investigated via three-dimensional device simulations. The back-channel program/erase is conducted independently from the front-channel read operation as information is stored in the form of charge at the backside of the channel, and hence, read disturbance is avoided. The memory cell structure is essentially equivalent to that of the fully-depleted transistor, which allows a high cell read current and a steep subthreshold slope, to enable lower voltage operation in comparison with conventional NAND flash devices. To minimize memory cell disturbance during programming, a charge depletion method using appropriate biasing of a buried back-gate line that runs parallel to the bit line is introduced. This design is a new candidate for scaling NAND flash memory to sub-20 nm lateral dimensions.