• Title/Summary/Keyword: lateral resisting system

Search Result 147, Processing Time 0.026 seconds

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Lateral Force Resisting System of Flat Plate Structure based on KBC 2008 Draft (KBC2008(안)에 근거한 무량판구조의 횡력저항시스템)

  • Kim, Do-Hyun;Lee, Hyun-Ho;Kim, Young-Sik;Woo, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.871-874
    • /
    • 2008
  • In the beginning of KBC-2005, many structural engineers had have difficulty in designing the flat plate structures. Recently KBC-2005 has been revising. At this point, we need to study the lateral resisting systems which are based on KBC-2008 draft and applicable to the flat plate structure. When the RC structure system of KBC 2008 draft is compared with that of KBC-2005, there are some differences. (1) Structural system and height limitations according to seismic design category (2) Special Requirement such as special RC shear wall (3) New lateral force resisting system such as shear wall-frame interaction system The KBC-2008 will give structural engineers to choose the various lateral force resisting system

  • PDF

Cyclic Behavior of Interior Joints in Post Tensioned Flat Plate Slab Systems (내부 포스트 텐션 플랫 플레이트 슬래브 기둥 접합부의 이력거동)

  • Kee Seong Hoon;Han Sang Whan;Ha Sang-Su;Lee Li Ryung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.107-110
    • /
    • 2005
  • In general, post tensioned (PT) flat plate slab systems have been used as a Gravity Load Resisting System (GLRS) in buildings. Thus, these systems should be constructed with Lateral Force Resisting Systems (LFRS) such as shear walls and moment resisting frames. When lateral loads such as winds or earthquakes occur, lateral load resisting systems undergo displacement by which connected gravity systems experience lateral displacement. Therefore, GLRS should have some lateral displacement capacity in order to hold gravity loads under severe earthquakes and winds. Since there are the limited number of researches on PT flat plate slab systems, the behavior of the systems have not been well defined. This study investigated the cyclic behavior of post tensioned flat plate slab systems. For this purpose, an experimental test was carried out using 4 interior PT flat plate slab-column specimens. All specimens have bottom reinforcement in the slab around the slab-column connection. Test variables of this experimental study are vertical load level and tendon distribution patterns.

  • PDF

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

Structural Behavior of Post-Tensioned Flat Plate Slab-Column Connections (포스트 텐션 플랫 플레이트 슬래브 접합부의 거동)

  • Cho Kyung Hyun;Han Sang Whan;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently, post tension flat plate slab system is widely used for a new slab structural system. Slab-column connections may fail in brittle manner by punching shear. Flat plate slabs have been widely used for gravity load resisting system in buildings. Lateral resistance usually provided by shear walls or moment resisting frames. Since plat plates move together with lateral loading system during earthquake or wind, it is important to evaluate the gravity resistance under a drift experienced by lateral force resisting system during either design earthquake or wind. Thus, this study investigated post tension flat plate slab systems whether they have sufficient strength and deformability to resist gravity loads during specified drift levels. Experimental research was carried out.

  • PDF

Design of Lateral Load Resisting System using Nonlinear Static Analysis (비선형 정적해석을 통한 횡저항 시스템의 보유성능 평가 및 설계방안 연구)

  • Song, Jin-Gyu;Kim, Geon-Woo;Jung, Sung-Jin;Song, Young-Hoon;Lee, Seung-Chang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.9-16
    • /
    • 2006
  • The design practice of the lateral resisting system has been traditionally dependent on the experience and know-how of a structural engineer. And the method to reflect the evaluation results of building's capacity on design process doesn't exist. The proposal of a rational design of the lateral load resisting system is based on the available full capacity $(R_{ac})$ of a building and the minimum required capacity $(R_{code})$ suggested in the code. This study suggests thai nonlinear static analysis, which is the estimation of the lateral capacity with the pushover analysis, be included in the existing design procedure of the structure. After finishing the basic structural design, the lateral resisting capacity ol a building is estimated. At the phase of nonlinear static analysis, pushover analysis is peformed to define the fully yielded baseshear $(V_Y)$. When the design wind baseshear $(V_{wind})$ is bigger than the design seismic baseshear $(V_D)$, the value is checked to determine whether or not it is smaller than the $V_Y$. After confirming that it is smaller, the $R_{ac}$ of the structure is computed. If the $V_D$ is bigger at first, only the $R_{ac}$ is computed. When the value of the estimation shows remarkable differences with the $R_{code}$, repetition of the design modification is needed for those approximate to the $R_{code}$. Application of the proposed design procedure to 2-D steel braced RC buildings has proven to be efficient.

Comparison between the Egyptian and international codes based on seismic response of mid- to high-rise moment resisting framed buildings

  • Ahmed Ibrahim;Ibrahim El-Araby;Ahmed I. Saleh;Mohammed Shaaban
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.347-361
    • /
    • 2023
  • This research aims to assess the behavior of reinforced concrete (RC) residential buildings when moment-resisting frames (MRFs) are used as the lateral resisting system. This investigation was conducted using MIDAS Gen v.19.0. Buildings with various plan footprints (Square, Rectangular, Circular, Triangular, and Plus-Shaped), and different heights (15 m, 30 m, 45 m, and 60 m) are investigated. The defined load cases, the equivalent static lateral load pattern, and the response spectrum function were defined as stated by the American Standard (ASCE 7-16), the 1997 Uniform Building Code (UBC97), the Egyptian Code for Loads (ECP-201), and the European Standard (EC8). Extensive comparisons of the results obtained by the different codes (including the story displacement, the story drift, and the base shear) were undertaken; to assess the response of moment-resisting multi-story framed buildings under lateral loads. The results revealed that, for all study cases under consideration, both ECP-201 and EC8 gave smaller base shear, displacement, and drift by one third to one fourth, around one fourth, around one fifth, respectively for both the ELF and RSA methods if compared to ASCE 7-16 and UBC97.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Applications of Construction Sequence Analyses to Prototype Models of Twisted Tall Buildings (비틀림 초고층 프로토타입 모델에 대한 시공단계해석의 적용)

  • Choe, Mi-Mi;Kim, Jae-Yo;Eom, Tae-Sung;Jang, Dong-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.89-97
    • /
    • 2013
  • With regard to complex-shaped tall buildings whose plans and constructions have been gradually on the increase, this study was aimed to analyze their structural behaviors during construction by applications of construction sequences analyses to prototype models. For twisted tall buildings, total 18 models of with three conditions of a lateral load-resisting system, a twisting angle, and a construction method were selected. A diagrid system and a braced tube system were applied as a lateral load-resisting system. For each lateral load-resisting system, three types of plan with $0^{\circ}$, $1^{\circ}$, and $2^{\circ}$ twisting angles and three construction methods with construction sequences of exterior tube and interior frame were assumed. The structural performances of tall buildings under constructions were analyzed with results of lateral displacements from construction sequence analyses. Also, construction performances of the construction period and the maximum lift weight were compared.

Experimental and numerical study on innovative seismic T-Resisting Frame (TRF)

  • Ashtari, Payam;Sedigh, Helia Barzegar;Hamedi, Farzaneh
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.251-269
    • /
    • 2016
  • In common structural systems, there are some limitations to provide adequate lateral stiffness, high ductility, and architectural openings simultaneously. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to improve the performance of structures. In this study, Configuration of TRF is a Vertical I-shaped Plate Girder (V.P.G) which is placed in the middle of the span and connected to side columns by two Horizontal Plate Girders (H.P.Gs) at each story level. System performance is improved by utilizing rigid connections in link beams (H.P.Gs). Plastic deformation leads to tension field action in H.P.Gs and causes energy dissipation in TRF; therefore, V.P.G. High plastic deformation in web of TRF's members affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF's members and improve overall performance of the system, appropriate criteria for placement of web stiffeners are presented in this study. In addition, an experimental study is conducted by applying cyclic loading and using finite element models. As a result, hysteresis curves indicate adequate lateral stiffness, stable hysteretic behavior, and high ductility factor of 6.73.