• Title/Summary/Keyword: lateral jet

Search Result 72, Processing Time 0.024 seconds

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect (고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭)

  • Baek, Chung;Lee, Seungsoo;Huh, Jinbum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.

Ballistic Resistance of an Armor Ceramic Structure against a Shaped Charge Jet As a Function of Penetration Depth

  • Hyunho Shin;Lee, Chang-Hyun;Wan Sung
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 1999
  • The ballistic capability of an alumina-rich oxide armor ceramic against a shaped jet was characterized as a function of penetration depth in a layered target structure. The penetration resistance of the ceramic, based upon the determination of penetration velocity, was not equally realized throughout the depth of penetration. It was abnormally low at an early stage of penetration, followed by a sudden increase to reach ~16GPa thereafter. There was no apparent change in such a profile with respect to the lateral size of the specimen. Based upon 2-D flash x-ray radiography and 3-D Hull code simulation, the feasibility of forming a pressure-induced predamnaged zone in front of the jet tip was speculated to foster an increased penetration velocity in the initial stage penetration, resulting in the diminished penetration resistance. The disappearance of such a predamaged zone with penetration was interpreted to restore the resistance of the ceramic in the later penetration stage.

  • PDF

Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole (변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성)

  • Rhee, Dong Ho;Kim, Byunggi;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.

Micropattern Arrays of Polymers/Quantum Dots Formed by Electrohydrodynamic Jet (e-jet) Printing (이젯 프린터를 사용한 고분자/퀀텀닷 마이크로 패터닝 공정)

  • Kim, Simon;Lee, Su Eon;Kim, Bong Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.18-23
    • /
    • 2022
  • Electrohydrodynamic jet (e-jet) printing, a type of direct contactless microfabrication technology, is a versatile fabrication process that enables a wide range of micro/nanopattern arrays by applying a strong electric field between the nozzle and the substrate. In general, the morphology and the thickness of polymers/quantum dot micropatterns show a systematic dependence on the diameter of the nozzle and the ink composition with a fully automated printing machine. The purpose of this report is to provide typical examples of e-jet printed micropatterns of polymers/quantum dots to explain the effect of each process variable on the result of experiments. Here, we demonstrate several operating conditions that allow high-resolution printing of layers of polymers/quantum dots with a precise control over thickness and submicron lateral resolution.

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.

A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration from Flight Test (비행시험을 통한 비대칭 무장 형상의 조종성 개선에 관한 연구)

  • Kim Chong-Sup;Hwang Byung-Moon;Kim Seung-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.713-718
    • /
    • 2006
  • Supersonic jet fighter aircraft have several different weapon loading configuration to support air-to-air combat and air-to-ground delivery of weapon modes. Especially, asymmetric loading configurations could result in decreased handling qualities for the pilot maneuvering of the aircraft. The design of the T-50 lateral-directional roll axis control laws change from beta-betadot feedback structure to simple roll rate feedback structure and gains such as F-16 in order to improve roll-off phenomena during pitch maneuver in asymmetric loading configuration. Consequently, it is found that the improved control law decreases the roll-off phenomenon in lateral axes during pitch maneuver, but initial roll response is very fast and wing pitching moment is increased. In this paper, we propose the lateral control law blending between beta-betadot and simple roll rate feedback system in order to decreases the roll-off phenomenon in lateral axes during pitch maneuver without degrading of roll performance.

Flow Structures Around a Freely-falling, Rectangular Cylinder (자유 낙하하는 사각 실린더 주위의 유동 구조)

  • Jeon, Chung-Ho;Lee, Chang-Yeol;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.8-15
    • /
    • 2010
  • The flow around a two-dimensional, rectangular cylinder that is freely falling in a channel was simulated using the immersed boundary method with direct forcing to determine the interactions between the fluid and the structure. The results of the present study were in good agreement with previous experimental results. Regardless of the H/L ratio (where H and L are the height and width of the rectangular cylinder, respectively), the flow structures had essentially the same pattern as the two symmetrical circulations that form about the horizontal center of the cylinder, with those centers located at each lateral position near the wake. When the cylinder approaches very close to the bottom, a jet-like flow appeared between the bottom of the rectangular cylinder and the channel. When the jet-like flow goes through the channel, surrounding fluids are sucked into this jet, forming the secondary vortices.

Thermal and flow characteristics of confined multiple slot jet impingement with exhaust ports (배기구를 가진 국한된 다중 슬롯 충돌제트의 열유동 특성)

  • Kang, Soo-Jin;Cho, Woo-Jin;Lee, Jong-Hyeok;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.835-840
    • /
    • 2009
  • In this paper, confined multiple slot jet impingement with exhaust ports is investigated numerically. A flow cell, defined as volume sectioned by the impingement and confinement surfaces and the centerlines of adjacent nozzle and exhaust port, is chosen for computational domain. The effects of Reynolds number and geometrical parameters on the heat transfer performance and the flow characteristics are studied. For turbulence, the Abe-Kondoh-Nagano version of the low-Reynolds k-$\varepsilon$ model is employed. The results showed that the local Nusselt number distribution is shifted down and show poor heat transfer performance for small Reynolds number and small ratio of the lateral and axial length of flow cell. The rest of range, except the range of the shift phenomenon, can be classified into three groups by heat transfer characteristics.

  • PDF

The Effect of Appendages of a Water-Jet Propelled High Speed Vessel on the Course Keeping Ability (워터젯 추진 고속선의 부가물이 침로안정성에 미치는 영향)

  • Park, Han-Sol;Kim, Dong-Jin;Lee, Sung-Kyun;Park, Jong-Yong;Rhee, Key-Pyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.357-362
    • /
    • 2011
  • It has been often reported that a water-jet propelled high speed vessel lost the course keeping ability in seaway. In this study, model tests of a high speed vessel were performed to measure the running attitude and to check the course keeping ability. The model ship may lose the course keeping ability due to bad running attitudes such as bow drop. So model tests were carried out to improve the running attitude by changing the position of longitudinal center of gravity and using appendages at the bow and the stern of a model. The position of lateral center of pressure moved toward stern and the course keeping ability was improved by modifying the transom wedge angle.

CHARACTERISTlCS OF PLANE JETS IN THE TRANSITION REGION

  • Seo, Il-Won;Ahn, Jung-Kyu;Kwon, Seok-Jae
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.163-176
    • /
    • 2002
  • In this study, laboratory experiments have been performed to investigate characteristics of the velocity fields and turbulence for non-buoyant plane jet in the vicinity of the jet nozzle using PIV system. The experimental results show that, in the transition region, the lateral velocity profile is in good agreement with Gaussian distribution. However, the coefficient of Gaussian distribution, $\K_{u,}$, decreases with longitudinal distance in the transition region. The existing theoretical equation for the centerline velocity tends to overestimate the measured data in the transition region. A new equation for the centerline velocity derived by incorporating varying $k_{u}$ gives better agreement with the measured data than the previous equation. The results of the turbulence characteristics show peak values are concentrated on the shear layers. The Reynolds shear stress profile shows the positive peak in the upper layer and negative peak in the lower layer. The turbulent kinetic energy also provides double peaks at the shear layers. The peak of the Reynolds shear stress and the turbulent kinetic energy increases until x/B=8, and then it decreases afterwards.s.

  • PDF