DOI QR코드

DOI QR Code

이젯 프린터를 사용한 고분자/퀀텀닷 마이크로 패터닝 공정

Micropattern Arrays of Polymers/Quantum Dots Formed by Electrohydrodynamic Jet (e-jet) Printing

  • 김시몬 (숭실대학교 유기신소재파이버공학과) ;
  • 이수언 (숭실대학교 스마트웨어러블공학과) ;
  • 김봉훈 (숭실대학교 유기신소재파이버공학과)
  • Kim, Simon (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Lee, Su Eon (Department of Smart Wearable Engineering, Soongsil University) ;
  • Kim, Bong Hoon (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2021.11.12
  • 심사 : 2021.11.22
  • 발행 : 2022.01.01

초록

이젯 프린팅은 직접적인 비접촉 마이크로 팹기술의 하나로서 노즐과 기판 사이에 강한 전기장을 가함으로써 넓은 범위의 마이크로/나노패턴 어레이를 구현할 수 있는 다목적 팹공정이다. 제조된 고분자/퀀텀닷 마이이크로 패턴의 모양과 두께는 자동화된 프린트 기계에 설치된 노즐 직경과 공정에 사용된 잉크 성분에 일반적으로 정밀한 의존성을 갖는다. 본 논문의 목적은 실험 결과에 영향을 미칠 수 있는 각각의 공정 변수 효과를 설명하기 위해서 이젯 프린팅된 고분자/퀀텀닷의 전형적인 실제 예를 설명하는데 있다. 여기서 우리는 마이크로/나노 해상도로 두께가 정밀하게 제어된 고분자/퀀텀닷 패턴을 제조할 수 있는 몇 가지 이젯 프린팅 공정을 구현하였다.

Electrohydrodynamic jet (e-jet) printing, a type of direct contactless microfabrication technology, is a versatile fabrication process that enables a wide range of micro/nanopattern arrays by applying a strong electric field between the nozzle and the substrate. In general, the morphology and the thickness of polymers/quantum dot micropatterns show a systematic dependence on the diameter of the nozzle and the ink composition with a fully automated printing machine. The purpose of this report is to provide typical examples of e-jet printed micropatterns of polymers/quantum dots to explain the effect of each process variable on the result of experiments. Here, we demonstrate several operating conditions that allow high-resolution printing of layers of polymers/quantum dots with a precise control over thickness and submicron lateral resolution.

키워드

과제정보

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2020R1C1C1014980).

참고문헌

  1. M. Zhang, G. Li, L. Huang, P. Ran, J. Huang, M. Yu, H. Yuqian, J. Guo, Z. Liu, and X. Ma, Appl. Mater. Today, 22, 100903 (2021). [DOI: https://doi.org/10.1016/j.apmt.2020.100903]
  2. H. Li, Z. Wang, Y. Cao, Y. Chen, and X. Feng, ACS Appl. Mater. Interfaces, 13, 1612 (2021). [DOI: https://doi.org/10.1021/acsami.0c19837]
  3. K. Kim, G. Kim, B. R. Lee, S. Ji, S. Y. Kim, B. W. An, M. H. Song, and J. U. Park, Nanoscale, 7, 13410 (2015). [DOI: https://doi.org/10.1039/C5NR03034J]
  4. C. Zhao, Y. Zhou, S. Gu, S. Cao, J. Wang, M. Zhang, Y. Wu, and D. Kong, ACS Appl. Mater. Interfaces, 12, 47902 (2020). [DOI: https://doi.org/10.1021/acsami.0c12415]
  5. T. Ahmadraji, L. Gonzalez-Macia, T. Ritvonen, A. Willert, S. Ylimaula, D. Donaghy, S. Tuurala, M. Suhonen, D. Smart, A. Morrin, V. Efremov, R. R. Baumann, M. Raja, A. Kemppainen, and A. J. Killard, Anal. Chem., 89, 7447 (2017). [DOI: https://doi.org/10.1021/acs.analchem.7b01012]
  6. X. Chu, G. Chen, X. Xiao, Z. Wang, T. Yang, Z. Xu, H. Huang, Y. Wang, C. Yan, N. Chen, H. Zhang, W. Yang, and J. Chen, Small, 17, 2100956 (2021). [DOI: https://doi.org/10.1002/smll.202100956]
  7. S. Abdolhosseinzadeh, R. Schneider, A. Verma, J. Heier, F. Nuesch, and C. J. Zhang, Adv. Mater., 32, 2000716 (2020). [ DOI: https://doi.org/10.1002/adma.202000716]
  8. P. Ren, Y. Liu, R. Song, B. O'Connor, J. Dong, and Y. Zhu, ACS Appl. Electron. Mater., 3, 192 (2021). [DOI: https://doi.org/10.1021/acsaelm.0c00747]
  9. H. S. An, Y. G. Park, K. Kim, Y. S. Nam, M. H. Song, and J. U. Park, Adv. Sci., 6, 1901603 (2019). [DOI: https://doi.org/10.1002/advs.201901603]
  10. D. Song, A. Mahajan, E. B. Secor, M. C. Hersam, L. F. Francis, and C. D. Frisbie, ACS Nano, 11, 7431 (2017). [DOI: https://doi.org/10.1021/acsnano.7b03795]
  11. K. Fukuda and T. Someya, Adv. Mater., 29, 1602736 (2017). [DOI: https://doi.org/10.1002/adma.201602736]
  12. K. Cao, F. Zhang, A. Zaeri, R. Zgeib, and R. C. Chang, Adv. Mater. Technol., 6, 2100251 (2021). [DOI: https://doi.org/10.1002/admt.202100251]
  13. Y. Zhong, H. Yu, P. Zhou, Y. Wen, W. Zhao, W. Zou, H. Luo, Y. Wang, and L. Liu, ACS Appl. Mater. Interfaces, 13, 39550 (2021). [DOI: https://doi.org/10.1021/acsami.1c06205]
  14. S. Su, J. Liang, Z. Wang, W. Xin, X. Li, and D. Wang, Nanoscale, 12, 24450 (2020). [DOI: https://doi.org/10.1039/D0NR08236H]
  15. J. Yong, Y. Liang, Y. Yu, B. Hassan, M. S. Hossain, K. Ganesan, R. R. Unnithan, R. Evans, G. Egan, G. Chana, B. Nasr, and E. Skafidas, ACS Appl. Mater. Interfaces, 11, 17521 (2019). [DOI: https://doi.org/10.1021/acsami.9b02465]
  16. T.T.T. Can, Y. J. Kwack, and W. S. Choi, Mater. Des., 199, 109408 (2021). [DOI: https://doi.org/10.1016/j.matdes.2020.109408]
  17. N. Farjam, T. H. Cho, N. P. Dasgupta, and K. Barton, Appl. Phys. Lett., 117, 133702 (2020). [DOI: https://doi.org/10.1063/5.0021038]
  18. Y. J. Jeong, H. Lee, B. S. Lee, S. Park, H. T. Yudistira, C. L. Choong, J. J. Park, C. E. Park, and D. Byun, ACS Appl. Mater. Interfaces, 6, 10736 (2014). [DOI: https://doi.org/10.1021/am502595a]
  19. F. Zheng, S. Zhang, J. Mo, H. Yi, S. Zhang, H. Yu, K. Lin, J. Sha, and Y. Chen, Small, 16, 2000397 (2020). [DOI: https://doi.org/10.1002/smll.202000397]
  20. B. H. Kim, M. S. Onses, J. B. Lim, S. Nam, N. Oh, H. Kim, K. J. Yu, J. W. Lee, J. H. Kim, S. K. Kang, C. H. Lee, J. Lee, J. H. Shin, N. H. Kim, C. Leal, M. Shim, and J. A. Rogers, Nano Lett., 15, 969 (2015). [DOI: https://doi.org/10.1021/nl503779e]
  21. H. J. Kwon, X. Li, J. Hong, C. E. Park, Y. J. Jeong, H. C. Moon, and S. H. Kim, Appl. Surf. Sci., 515, 145989 (2020). [DOI: https://doi.org/10.1016/j.apsusc.2020.145989]
  22. M. S. Onses, E. Sutanto, P. M. Ferreira, A. G. Alleyne, and J. A. Rogers, Small, 11, 4237 (2015). [DOI: https://doi.org/10.1002/smll.201500593]
  23. Y. A. Huang, H. Wu, C. Zhu, W. Xiong, F. Chen, L. Xiao, J. Liu, K. Wang, H. Li, D. Ye, Y. Duan, J. Chen, H. Yang, W. Li, K. Bai, Z. Yin, and H. Ding, Int. J. Extreme Manuf., 3, 045101 (2021). [DOI: https://doi.org/10.1088/2631-7990/ac115a]
  24. W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee, and S. Lee, Adv. Mater., 21, 1690 (2009). [DOI: https://doi.org/10.1002/adma.200801908]
  25. J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, and J. Cho, Adv. Mater., 19, 1927 (2007). [DOI: https://doi.org/10.1002/adma.200602642]
  26. S. Pekdemir, I. Torun, M. Sakir, M. Ruzi, J. A. Rogers, and M. S. Onses, ACS Nano, 14, 8276 (2020). [DOI: https://doi.org/10.1021/acsnano.0c01987]
  27. W. Zou, H. Yu, P. Zhou, Y. Zhong, Y. Wang, and L. Liu, Appl. Surf. Sci., 543, 148800 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2020.148800]
  28. J. Kang, Y. Jang, Y. Kim, S. H. Cho, J. Suhr, B. H. Hong, J. B. Choi, and D. Byun, Nanoscale, 7, 6567 (2015). [DOI: https://doi.org/10.1039/C4NR06984F]
  29. Q. Wang, G. Zhang, H. Zhang, Y. Duan, Z. Yin, and Y. A. Huang, Adv. Funct. Mater., 31, 2100857 (2021). [DOI: https://doi.org/10.1002/adfm.202100857]
  30. S. Lee, S. W. Kim, M. Ghidelli, H. S. An, J. Jang, A. L. Bassi, S. Y. Lee, and J. U. Park, Nano Lett., 20, 4872 (2020). [DOI: https://doi.org/10.1021/acs.nanolett.0c00869]