• Title/Summary/Keyword: lateral crack

Search Result 170, Processing Time 0.02 seconds

Overturning Resistance of Plain Concrete Piers in OSPG Railroad Bridges

  • Rhee, In-Kyu;Park, Joo-Nam;Choi, Eun-Soo
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • The steel plate-girder bridges with concrete gravity piers have possibilities of overturning by lateral inertial force which can be reproduced by sudden earthquake attack. This paper explores an overturning mechanism of existing concrete gravity pier onto the sandy soil in the event of lateral push-over load by in-situ experimental observation. The in-situ push-over experiment for pier with earth anchors between spread footing and rock beds exhibits a reasonable enhancement of ductility against overturning. In unanchored system, a flexural crack at cold joint of concrete pier is not developed because of the over-turning of the pier. This leads a global instability (rotation) of pier-footing system with relatively low stresses in pier itself. While a lateral load is persistently increased in anchored system, the successive flexural cracking failure at cold joint is observed even after the local shear failure of soil due to redistribution of stress equilibrium between soil and pier structure as long as a tensile action of anchor cable is active.

  • PDF

Health monitoring of steel structures using impedance of thickness modes at PZT patches

  • Park, Seunghee;Yun, Chung-Bang;Roh, Yongrae;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.339-353
    • /
    • 2005
  • This paper presents the results of a feasibility study on an impedance-based damage detection technique using thickness modes of piezoelectric (PZT) patches for steel structures. It is newly proposed to analyze the changes of the impedances of the thickness modes (frequency range > 1 MHz) at the PZT based on its resonant frequency shifts rather than those of the lateral modes (frequency range > 20 kHz) at the PZT based on its root mean square (RMS) deviations, since the former gives more significant variations in the resonant frequency shifts of the signals for identifying localities of small damages under the same measurement condition. In this paper, firstly, a numerical analysis was performed to understand the basics of the NDE technique using the impedance using an idealized 1-D electro-mechanical model consisting of a steel plate and a PZT patch. Then, experimental studies were carried out on two kinds of structural members of steel. Comparisons have been made between the results of crack detections using the thickness and lateral modes of the PZT patches.

Effect of Transverse Steel on Shear Performance for RC Bridge Columns (철근콘크리트 원형 교각의 전단성능에 대한 횡방향철근의 영향)

  • Ko, Seong Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.191-199
    • /
    • 2021
  • In seismic design, hollow section concrete columns offer advantages by reducing the weight and seismic mass compared to concrete section RC bridge columns. However, the flexure-shear behavior and spirals strain of hollow section concrete columns are not well-understood. Octagonal RC bridge columns of a small-scale model were tested under cyclic lateral load with constant axial load. The volumetric ratio of the transverse spiral hoop of all specimens is 0.00206. The test results showed that the structural performance of the hollow specimen, such as the initial crack pattern, initial stiffness, and diagonal crack pattern, was comparable to that of the solid specimen. However, the lateral strength and ultimate displacement of the hollow specimen noticeably decreased after the drift ratio of 3%. The columns showed flexure-shear failure at the final stage. Analytical and experimental investigations are presented in this study to understand a correlation confinement steel ratio with neutral axis and a correlation between the strain of spirals and the shear resistance capacity of steel in hollow and solid section concrete columns. Furthermore, shear strength components (Vc, V, Vp) and concrete stress were investigated.

An Experimental Study on the Damage Mechanism of Particle Impact in a Scratched Glass (표면거칠기를 가진 유리의 입자충격 손상기구에 관한 실험적 연구)

  • Suh, Chang-Min;Chung, Seong-Muk;Lee, Mun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2196-2204
    • /
    • 1996
  • The damage mechanism by the impact of steel ball on the soda-lime glass having a different surface roughness was investigated. An initiation and a propagation behavior of cracks formed by each impact velocity were quantitatively studied. A 4-point bending test was carried out to evaluate the remaining bending strength of a scratched soda-lime glass which impacted by the steel ball. As the surface roughness was increased, the shape of cracks became more irregular rather than those of the smooth specimens. The phenomenon of turning up in the wing of cone cracks occurred even at the lower velocity than the critical velocity caused the crushing. The threshold velocity of cracks initiation generally became lower than those of smooth specimen. An initiation and a propagation behavior of radial cracks had no relation with the direction of scratch on the surface. The remaning benidng strength of the scratched specimen according to impact velocity had no big difference compared with those of the smooth specimen.

AN EXPERIMENTAL STUDY ON THE FATIGUE FRACTURE OF LAMINATE PORCELAIN (치과용 라미네이트 도재의 피로파괴에 관한 실험적 연구)

  • Park Charn-Woon;Bae Tae-Sung;Lee Sang-Don
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.482-505
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture characteristics and the effect of resin bonding of laminate porcelain. In order to characterize the indentation-induced crack, Young's moduli and characteristic indentation dimensions were measured. The fatigue life under three point flexure test was measured using the electro-dynamic type fatigue machine, and the crack propagation with thermocycling was investigated on the condition of 15 second dwell time each in $5^{\circ}C\;and\;55^{\circ}C$ bath. The Vickers indentation pattern and the fracture surface were examined by an optical microscope and a scanning electron microscope (SEM). The results obtained were summarized as follows ; 1. Young's moduli(E) of the laminate porcelain and the resin cement used in this experiment were $62.56{\pm}3.79GPa$ and $15.01{\pm}0.12GPa$, respectively. 2. The initial crack size of the laminate porcelain was $69.19{\pm}5.94{\mu}m$ when an indentation load of 9.8N was applied, and the fracture toughness was $1.065{\pm}0.156MPa\;m^{1/2}$. 3. The fatigue life of laminate porcelain showed the constant fracture range at the stress level 27.46-35.30MPa. 4. When a cyclic flexure load was applied, the fatigue life of resin-bonded laminate porcelain was more decreased than that of laminate porcelain. 5. When a thermocycling was conducted, the crack growth rate of resin-bonded laminate porcelain was more increased than that of laminate porcelain. 6. Fracture surface showed the radial crack, the lateral crack, and the macroscopic crack branching region beneath the plastic deformation region when an indentation load of 9.8N was applied.

  • PDF

The Effects of Copper Electroplating Bath on Fabrication of Fine Copper Lines on Polyimide Film Using Semi-additive Method (Semi-additive 방법을 이용한 폴리이미드 필름 상의 미세 구리배선 제작 시 도금액의 영향)

  • Byun Sung-Sup;Lee Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.9-13
    • /
    • 2006
  • The copper lines in COF are usually fabricated by subtractive method. As the width of lines are smaller, the subtractive method has a lateral etching problems. In semi-additive method, copper lines are fabricated by lithographic technique followed by electroplating method. Fine line patterns of $10-40{\mu}m$ were used for this study. Two different types of thick photoresist, AZ4620 and PMER900, were employed for PR mold. Copper lines were fabricated by electroplating method. The crack were found in fine copper lines due to high residual stress when normal copper electroplating bath were used. The via filling copper electroplating bath were replaced the normal electroplating bath and then cracks were not found in the fine copper lines. During substrate etching, the lateral etching of copper lines were not occurred.

  • PDF

Properties of Fire Endurance of High Performance RC Column with Laterral Confinement Method (횡구속 방법에 따른 고성능 RC 기둥 콘크리트의 내화특성)

  • Hwang Yin Seong;Kim Ki-Hoon;Bae Yeoun Ki;Lee Bo Hyeong;Lee Jae Sam;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.553-556
    • /
    • 2004
  • This paper is to investigate the spalling and fire endurance of high performance RC column member with PP fiber and lateral confinement of metal lath and non fire resistance removal type form. According to test results, combination of PP fiber and metal lath as well as use fire resistance non removal type form had favorable fire resistance by discharging internal vapour pressure and lateral confining. After fire endurance test, compressive strength decreased markedly caused by internal expansion pressure and crack. Residual strength of plain concrete was decreased to $22\%$. The use of PP fiber and lateral confinement of metal lath and non removal type form enhanced the residual strength above $40\%$. Especially, the combination of $0.1\%$ of PP fiber and lateral confinement with the level of 2.3T exhibited more than $51\%$ of residual strength. Therefore, to improve fire endurance and spalling resistance, the combination of $0.1\%$ of PP fiber and metal lath with 2.3T can be the proper measure.

  • PDF

Suppressing Lateral Conduction Loss of Thin-film Cathode by Inserting a Denser Bridging Layer

  • Park, Jung Hoon;Lee, Seung Hwan;Kim, Hyoungchul;Yoon, Kyung Joong;Lee, Jong-Ho;Han, Seung Min;Son, Ji-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.304-307
    • /
    • 2015
  • To reduce the lateral conduction loss of thin-film-processed cathodes, the microstructure of the thin-film cathode is engineered to contain a denser bridging layer in the middle. By doing so, the characteristic crack-like pores that separate the cathode domains in thin-film-processed cathodes and hamper lateral conduction are better connected and, as a result, the sheet resistance of the cathode is effectively reduced by a factor of 5. This induces suppression of the lateral conduction loss and expansion of the effective current collecting area; the cell performance is improved by more than 30%.

Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates

  • Ghannadpour, S. Amir M.;Karimi, Mona
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.603-619
    • /
    • 2018
  • In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls (철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • This study generalizes the lateral load-displacement relationship of reinforced concrete shear walls from the section analysis for moment-curvature response to straightforwardly evaluate the flexural capacity and ductility of such members. Moment and curvature at different selected points including the first flexural crack, yielding of tensile reinforcing bar, maximum strength, 80% of the maximum strength at descending branch, and fracture of tensile reinforcing bar are calculated based on the strain compatibility and equilibrium of internal forces. The strain at extreme compressive fiber to determine the curvature at the descending branch is formulated as a function of reduction factor of maximum stress of concrete and volumetric index of lateral reinforcement using the stress-strain model of confined concrete proposed by Razvi and Saatcioglu. The moment prediction models are simply formulated as a function of tensile reinforcement index, vertical reinforcement index, and axial load index from an extensive parametric study. Lateral displacement is calculated by using the moment area method of idealized curvature distribution along the wall height. The generalized lateral load-displacement relationship is in good agreement with test result, even at the descending branch after ultimate strength of shear walls.