• Title/Summary/Keyword: lateral buckling

Search Result 375, Processing Time 0.031 seconds

Behavior Analysis of Laminated Composite Cylindrical Shells with Prebuckling (전좌굴을 고려한 복합적층원통셸의 거동해석)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.150-156
    • /
    • 2000
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression and lateral pressure are considered for laminated composite cylindrical shells with the ratios of length to radius. The shell walls are made of a laminate with several symmetric ply orientations. The study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered. Review the influence of nonlinear prebuckling for the buckling loads, the difference between the actual and classical buckling loads are increased as the increments with the ratios of length to radius, for which is applied the axial compression, but almost same for the lateral pressure.

  • PDF

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

Buckling of Composite Cylindrical Shells Sugjected ot Torsion of Lateral Pressure (비틀림 및 횡압럭을 받고 있는 복합재 원통쉘의 좌굴)

  • Han, Byeong-Gi;Lee, Seong-Hui;Yu, Taek-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1436-1444
    • /
    • 1996
  • The problem ofinstability of laminated circular cylindrical shell under the action of torsio or lateral pressure is investigated. The analysis is based on the Sander's theory for finite deformations of thin shell. The buckling is elastic for thin compoisite shell nad the geometry is assumed to be free of initial imperfections. The equilibrium equations are obrained by usitn the p[erturbation technique. Solution procedure is based on the Galerkin mehtod. The computer program for numerical results is made for several stacking sequence, length-to-radius ratio, and radius-to-thickness ratio. The numerical results of buckling load are present.

Total Lagrangian Finite Element Analysis of Lateral Buckling for Thin Beam Structures (얇은 보 구조물의 횡좌굴에 대한 total lagrangian 유한요소해석)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.7-22
    • /
    • 1997
  • A finite element analysis is performed for lateral buckling problems on the basis of a geometrically nonlinear formulation for a beam with small elastic strain but with possibly large rotations. The total Lagrangian formulation for a general large deformation, which involves finite rotations, is chosen and the exponential map is used to treat finite rotations from the Eulerian point of view. For lateral buckling, the point of vanishing determinant of the resulting unsymmetric tangent stiffness is traced to examine its relationship to bifurcation points. It is found that the points of vanishing determinant is not corresponding to bifurcation points for large deformations in general, which suggests that the present unsymmetric tangent stiffness is not an exact first derivative of internal forces with respect to displacement. This is illustrated through several numerical examples and followed by appropriate discussion.

  • PDF

Investigation of the Instability of FGM box beams

  • Ziane, Noureddine;Meftah, Sid Ahmed;Ruta, Giuseppe;Tounsi, Abdelouahed;Adda Bedia, El Abbas
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.579-595
    • /
    • 2015
  • A general geometrically non-linear model for lateral-torsional buckling of thick and thin-walled FGM box beams is presented. In this model primary and secondary torsional warping and shear effects are taken into account. The coupled equilibrium equations obtained from Galerkin's method are derived and the corresponding tangent matrix is used to compute the critical moments. General expression is derived for the lateral-torsional buckling load of unshearable FGM beams. The results are validated by comparison with a 3D finite element simulation using the code ABAQUS. The influences of the geometrical characteristics and the shear effects on the buckling loads are demonstrated through several case studies.

Buckling of cylindrical shells with internal ring supports

  • Wang, C.M.;Tian, J.;Swaddiwudhipong, S.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.369-381
    • /
    • 1994
  • This paper is concerned with the elastic buckling of cylindrical shells with internal rigid ring supports. The internal supports impose a zero lateral deflection constraint on the buckling modes at their locations. An automated Rayleigh-Ritz method is presented for solving this buckling problem. The method can handle any combination of end conditions and any number of internal supports. Moreover, it is simple to code and can yield very accurate solutions. New buckling results for cylindrical shells with a single internal ring support, and under lateral pressure and hydrostatic pressure, are given in the form of design charts. These results should be valuable to engineering designers.

Inelastic Buckling Behavior of Simply Supported I-Beam under Transverse Loading (횡방향 하중을 받는 I형강 단순보의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.155-167
    • /
    • 2004
  • In this paper, the inelastic buckling behavior of the beam under uniform bending was investigated using the energy-based method, which can tackle problems in fourth order eigenvalue. The pattern of residual stress was not available to satisfy the I-sections manufactured in Korea. however; therefore, the well-known polynomial and simplified pattern of residual stress was adopted in this study. The inelastic lateral-distortional buckling behavior of the beam with I-sections manufactured in Korea was investigated. The study was then extended to the inelastic lateral-torsional buckling of the beam by minimizing the out-of-plane web distortion. The inelastic lateral-torsional buckling results obtained in this paper were compared with the prediction of allowable bending stress given in the Korean steel designers' manual (1995). Results showed that the importance of inelastic lateral-distortional buckling did not arise for beams under uniform bending. Likewise, the design method in KSDM (1995) was proven to bo too conservative for intermediate and short spans of beams without intermediate bracing.

Influence of Lateral Bracing on Lateral Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡좌굴에 대한 횡브레이싱의 영향에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.109-118
    • /
    • 1992
  • Lateral bracing has long been used in design practice to enhance the carrying capacity of the lateral buckling of the beam. Many factors, critically important to lateral bracing performance, do not appear in design formulas. Some of these factors are discussed in this study for the application to short I - beams under repeated loadings through parametric studies with an analytical model : the brace location along the length of the beam, the height of the bracing above the shear center of the beam, and the strength and stiffness of the brace. The parametric studies are carried out using a propped cantilever arrangement, and also using a geometrically (fully) nonlinear beam model for the brace as well as the beam to capture the system buckling. An idealized bracing system is configured to restrain lateral motion, but not rotation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm.

  • PDF

Lateral torsional buckling of doubly-symmetric steel cellular I-Beams

  • Mehmet Fethi Ertenli;Erdal Erdal;Alper Buyukkaragoz;Ilker Kalkan;Ceyhun Aksoylu;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.709-718
    • /
    • 2023
  • The absence of an important portion of the web plate in steel beams with multiple circular perforations, cellular beams, causes the web plate to undergo distortions prior to and during lateral torsional buckling (LTB). The conventional LTB equations in the codes and literature underestimate the buckling moments of cellular beams due to web distortions. The present study is an attempt to develop analytical methods for estimating the elastic buckling moments of cellular beams. The proposed methods rely on the reductions in the torsional and warping rigidities of the beams due to web distortions and the reductions in the weak-axis bending and torsional rigidities due to the presence of web openings. To test the accuracy of the analytical estimates from proposed solutions, a total of 114 finite element analyses were conducted for six different standard IPEO sections and varying unbraced lengths within the elastic limits. These analyses clearly indicated that the LTB solutions in the AISC 360-16 and AS4100:2020 codes overestimate the buckling loads of cellular beams within elastic limits, particularly at shorter span lengths. The LDB solutions in the literature and the Eurocode 3 LTB solution, on the other hand, provided conservative buckling moment estimates along the entire range of elastic buckling.

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.