• Title/Summary/Keyword: latent heat flux

Search Result 126, Processing Time 0.03 seconds

Outlier Detection and Replacement for Vertical Wind Speed in the Measurement of Actual Evapotranspiration (실제증발산 측정 시 연직 풍속 이상치 탐색 및 대체)

  • Park, Chun Gun;Rim, Chang-Soo;Lim, Kwang-Suop;Chae, Hyo-Sok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1455-1461
    • /
    • 2014
  • In this study, using flux data measured in Deokgokje reservoir watershed near Deokyu mountain in May, June, and July 2011, statistical analysis was conducted for outlier detection and replacement for vertical wind speed in the measurement of evapotranspiration based on eddy covariance method. To statistically analyze the outliers of vertical wind speed, the outlier detection method based on interquartile range (IQR) in boxplot was employed and the detected outliers were deleted or replaced with mean. The comparison was conducted for the measured evapotranspiration before and after the outlier replacement. The study results showed that there is a difference between evapotranspiration before outlier replacement and evapotranspiration after outlier replacement, especially during the rainy day. Therefore, based on the study results, the outliers should be deleted or replaced in the measurement of evapotranspiration.

Derivation of Biochemical and Biophysical Parameters and Their Application to the Simple Biosphere Model (SiB2) (생화학 및 생물리 모수들의 도출과 생권 모형(SiB2)에의 적용)

  • Chae Nam-Yi;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • Vegetation canopy plays an important role in $CO_2$/$H_2$O exchange between the biosphere and the atmosphere by controlling leaf stomata. In this study, rice (Oryza sativa L.), a staple crop in Asia was investigated to formulate its single leaf model of photosynthesis and stomatal conductance. Photosynthesis and stomatal conductance were measured with a portable infrared gas analyzer system. Other plant and meteorological variables were also measured. To evaluate empirical constants in this biochemical leaf model, nonlinear least squares technique was used. The maximum catalytic activity of enzyme and the maximum rate of electron transport were $ 100\mu$$m^{-2}$ $s^{-1}$ and $140 \mu$㏖ m$^{-2}$ s$^{-1}$ (@ 35$^{\circ}C$), respectively. The empirical constants, m and b, associated with stomatal conductance model were 9.7 and $0.06 m^{-2}$ $s^{-1}$ , respectively. On a leaf scale, agreements between the modeled and the measured values of photosynthesis and stomatal conductance were on average within 20%, and the simulation of diurnal variation was also satisfactory On a canopy scale, the Simple Biosphere model(SiB2) was tested using the derived parameters. The modeled energy fluxes were compared against the micrometeorologically measured fluxes over a rice canopy. Agreements between the modeled and the measured values of net radiation, sensible heat and latent heat fluxes, and $CO_2$ flux (i.e., net canopy photosynthesis) were on average within 25%.

  • PDF

Ice Formation on the Outer Surface of a Vertical Tube with Inside Refrigerant Boiling (관 내부 냉매비등이 있는 수직관 외부 얼음 형성 연구)

  • Nguyen, Minh Phu;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.129-135
    • /
    • 2011
  • An ice-making model has been developed and analyzed in this study. The effects of the following on the ice formation on the outer surface of a tube in which a refrigerant flows and boils are numerically investigated: thermal resistance of the refrigerant and thermal resistance of the ice formed on the outer surface of the tube. The ice thickness and related variables are analyzed in the case of the refrigerants R22 and R134a by using the expressions for phase-change heat transfer and boiling heat transfer coefficient. Vapor qualities of the refrigerants range from 0 to 0.8. As a result, up to the first 30 min, the internal convection resistance is higher than the thermal resistance of the ice on the external surface of the tube. However, after about 30 min, the thermal resistance of the ice increases remarkably due to the increase in the ice thickness. Thus, the heat flux to the refrigerant decreases, and further, the refrigerant quality and the boiling heat transfer coefficient also decrease. As the heat transfer coefficient of R22 is higher than that of R134a, the mass of the ice formed when R22 is used is higher than that formed when R134a is used.

Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System (경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가)

  • Kim, Se-Chang;Park, Bong-Ju
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.503-511
    • /
    • 2013
  • The purpose of this study was to evaluate temperature reduction and heat budget of extensive modular green roof planted with Sedum sarmentosum and Zoysia japonica. Plant height and green coverage were measured as plant growth. Temperature, net radiation and evapotranspiration of concrete surface, green roof surface, in-soil and bottom were measured from August 2 to August 3, 2012 (48 hours). On 3 P.M., August 3, 2012, when air temperature was the highest ($34.6^{\circ}C$), concrete surface temperature was highest ($57.5^{\circ}C$), followed by surface temperature of Sedum sarmentosum ($40.1^{\circ}C$) and Zoysia japonica ($38.3^{\circ}C$), which proved temperature reduction effect of green roof. Temperature reduction effect of green roof was also shown inside green roof soil, and bottom of green roof. It was found that Zoysia japonica was more effective in temperature reduction than Sedum sarmentosum. Compared with the case of concrete surface, the highest temperature of green roof surface was observed approximately 2 hours delayed. Plant species, temperature and soil moisture were found to have impact on surface temperature reduction. Plant species, air temperature, soil moisture and green roof surface temperature were found to have impact on temperature reduction in green roof bottom. As results of heat budget analysis, sensible heat was highest on concrete surface and was found to be reduced by green roof. Latent heat flux of Zoysia japonica was higher than that of Sedum sarmentosum, which implied that Zoysia japonica was more effective to improve thermal environment for green roof than Sedum sarmentosum.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products (MODIS 위성자료를 이용한 Modified Satellite-Based Priestley-Taylor (MS-PT)의 적용 및 실제 증발산 평가)

  • Baik, Jongjin;Park, Jongmin;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.903-912
    • /
    • 2016
  • Accurate understanding and estimating Evapotranspiration (ET) is essential for understanding the mechanism of water cycle and water budget. ET has been analyzed by many researchers in worldwide while Ground-based ET has limiation in analyzing the spatio-temporal pattrens of ET. Thus, many researches have been conducted to represent the spatio-temporal variation of ET by using hydrometeorological variables estimated from remote sensing datasets. Previous remote sensing based ET algorithms, however, have disadvantage in that various hydrometeological input datasets were required. In this study, actual ET was estimated by MODIS-based Rn and MS-PT algorithm requiring relatively less input data than previous method. The result confirmed that the observed $R_N$ and latent heat flux from the eddy-covariance based fluxtowers located at CFK and SMK showed high correlation with the estimated $R_N$ and ET. The average determination coefficients ($R^2$) of ET estimated from satellite dataset over study periods were 0.77 (0.72-0.81) in Cheongmi (CFK) and 0.70 (0.67-0.78) in Sulma (SMK), respectively. Comparing with the actual ET of two flux tower sites, however, SMK showed more overestimated patterns than CFK due to the vegetation and radiation related errors.

Heat Balance Characteristics and Water Use Efficiency of Soybean Community (콩군낙(群落)의 열수지특성(熱收支特性)과 건물(乾物)로의 물이용효율(利用效率))

  • Lee, Yang-Soo;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean "Paldalkong" was sown with the space of $47{\times}10cm$ at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with recorded 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air. The linear relationship was obtained between daily or daytime net radiation and evapotranspiration. The evapotranspiration calculated by Bowen ratio-energy balance method was about 150 percent of class A pan evaporation during the growing season. The total solar radiation from June 20 to August 27 was $1043MJm^{-2}$. The 85 percent of the total shortwave radiation was used for evaporative heat. The dry matter production within the period was $836gm^{-2}$ and the water use efficiency was $2.31gDM\;kg^{-1}\;H_2O$.

  • PDF

Estimation of evaporation from water surface in Yongdam Dam using the empirical evaporation equaion (경험적 증발량 공식을 적용한 용담댐 시험유역의 수면증발량 추정)

  • Park, Minwoo;Lee, Joo-Heon;Lim, Yong-kyu;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.139-150
    • /
    • 2024
  • This study introduced a method of estimating water surface evaporation using the physical-based Penman combination equation (PCE) and the Penman wind function (PWF). A set of regression parameters in the PCE and PWF models were optimized by using the observed evaporation data for the period 2016-2017 in the Yongdam Dam watershed, and their effectiveness was explored. The estimated evaporation over the Deokyu Mountain flux tower demonstrated that the PWF method appears to have more improved results in terms of correlation, but both methods showed overestimation. Further, the PWF method was applied to the observed hydro-meteorological data on the surface of Yongdam Lake. The PWF method outperformed the PCE in the estimation of water surface evaporation in terms of goodness-of-fit measure and visual evaluation. Future studies will focus on a regionalization process which can be effective in estimating water surface evaporation for the ungauged area by linking hydrometeorological characteristics and regression parameters.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA (미국 네브라스카의 관개된 옥수수 농업생태계의 복사, 에너지 및 엔트로피의 교환)

  • Yang, Hyunyoung;Indriwati, Yohana Maria;Suyker, Andrew E.;Lee, Jihye;Lee, Kyung-do;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.1
    • /
    • pp.26-46
    • /
    • 2020
  • An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.