Browse > Article
http://dx.doi.org/10.5532/KJAFM.2020.22.1.26

Radiation, Energy, and Entropy Exchange in an Irrigated-Maize Agroecosystem in Nebraska, USA  

Yang, Hyunyoung (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Indriwati, Yohana Maria (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Suyker, Andrew E. (School of Natural Resources, University of Nebraska-Lincoln)
Lee, Jihye (National Center for Agro Meteorology)
Lee, Kyung-do (National Institute of Agricultural Science, Rural Development Administration)
Kim, Joon (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.22, no.1, 2020 , pp. 26-46 More about this Journal
Abstract
An irrigated-maize agroecosystem is viewed as an open thermodynamic system upon which solar radiation impresses a large gradient that moves the system away from equilibrium. Following the imperative of the second law of thermodynamics, such agroecosystem resists and reduces the externally applied gradient by using all means of this nature-human coupled system acting together as a nonequilibrium dissipative process. The ultimate purpose of our study is to test this hypothesis by examining the energetics of agroecosystem growth and development. As a first step toward this test, we employed the eddy covariance flux data from 2003 to 2014 at the AmeriFlux NE1 irrigated-maize site at Mead, Nebraska, USA, and analyzed the energetics of this agroecosystem by scrutinizing its radiation, energy and entropy exchange. Our results showed: (1) more energy capture during growing season than non-growing season, and increasing energy capture through growing season until senescence; (2) more energy flow activity within and through the system, providing greater potential for degradation; (3) higher efficiency in terms of carbon uptake and water use through growing season until senescence; and (4) the resulting energy degradation occurred at the expense of increasing net entropy accumulation within the system as well as net entropy transfer out to the surrounding environment. Under the drought conditions in 2012, the increased entropy production within the system was accompanied by the enhanced entropy transfer out of the system, resulting in insignificant net entropy change. Drought mitigation with more frequent irrigation shifted the main route of entropy transfer from sensible to latent heat fluxes, yielding the production and carbon uptake exceeding the 12-year mean values at the cost of less efficient use of water and light.
Keywords
Radiation; Energy; Entropy; Thermodynamics; Irrigated-maize; Agroecosystem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adegoke, J. O., R. A. P. Sr., J. Eastman, R. Mahmood, and K. G. Hubbard, 2003: Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the U.S. high plains. Monthly Weather Review 131(3), 556-564. https://doi.org/10.1175/1520-0493(2003)131<0556:Ioioms>2.0.Co;2   DOI
2 Brunsell, N., S. Schymanski, and A. Kleidon, 2011: Quantifying the thermodynamic entropy budget of the land surface: is this useful? Earth System Dynamics Discussions 2(1), 57-103. 10.5194/esdd-2-71-2011
3 Clausius, R., 1867: The mechanical theory of heat: With its applications to the steam-engine and to the physical properties of bodies. J. van Voorst., London.
4 Cochran, F. V., N. A. Brunsell, and A. E. Suyker, 2016: A thermodynamic approach for assessing agroecosystem sustainability. Ecological Indicators 67, 204-214. https://doi.org/10.1016/j.ecolind.2016.01.045   DOI
5 Endres, R. G., 2017: Entropy production selects nonequilibrium states in multistable systems. Scientific Reports ,7(1), 14437. https://doi.org/10.1038/s41598-017-14485-8   DOI
6 Eulenstein, F., W. Haberstock, W. Steinborn, Y. U. Svirezhev, J. Olejnik, S. Schlindwein, and V. Pomaz, 2003: Perspectives from energetic-thermodynamic analysis of land use systems: Perspektiven der energetischthermodynamischen analyse von landnutzungssystemen. Archives of Agronomy and Soil Science 49, 663-676. https://doi.org/10.1080/03650340310001615138   DOI
7 Desai, A. R., A. D. Richardson, A. M. Moffat, J. Kattge, D. Y. Hollinger, A. Barr, E. Falge, A. Noormets, D. Papale, M. Reichstein, and V. J. Stauch, 2008: Cross-site evaluation of eddy covariance GPP and RE decomposition techniques 148(6-7), 821-838. https://doi.org/10.1016/j.agrformet.2007.11.012   DOI
8 Falge, E., D. Baldocchi, J. Tenhunen, M. Aubinet, P. Bakwin, P. Berbigier, C. Bernhofer, G. Burba, R. Clement, K. J. Davis, J. A. Elbers, A. H. Goldstein, A. Grelle, A. Granier, J. Guomundsson, D. Hollinger, A. S. Kowalski, G. Katul, B. E. Law, Y. Malhi, T. Meyers, R. K. Monson, J. W. Munger, W. Oechel, K. T. Paw U, K. Pilegaard, U. Rannik, C. Rebmann, A. Suyker, R. Valentini, K. Wilson, and S. Wofsy, 2002: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113(1), 53-74. https://doi.org/10.1016/S0168-1923(02)00102-8   DOI
9 Fath, B. D., S. E. Jorgensen, B. C. Patten, and M. Straskraba, 2004: Ecosystem growth and development. BioSystems 77, 213-228. https://doi.org/10.1016/j.biosystems.2004.06.001   DOI
10 Flanagan, L. B., L. A. Wever, and P. J. Carson, 2002: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in anorthern temperate grassland. Global Change Biology 8, 599-615.   DOI
11 Huber, D., D. Mechem, and N. Brunsell, 2014: The effects of great plains irrigation on the surface energy balance, regional circulation, and precipitation. Climate 2, 103-128. https://doi.org/10.3390/cli2020103   DOI
12 Gitelson, A. A., A. Vina, S. B. Verma, D. C. Rundquist, T. J. Arkebauer, G. Keydan, B. Leavitt, V. Ciganda, G. G. Burba, and A. E. Suyker, 2006: Relationship between gross primary production and chlorophyll content in crops: Implications for the synoptic monitoring of vegetation productivity. Journal of Geophysical Research: Atmospheres 111(D8). https://doi.org/10.1029/2005jd006017
13 Grigg, N. S., 2014: The 2011-2012 drought in the United States: new lessons from a record event. International Journal of Water Resources Development 30(2), 183-199. https://doi.org/10.1080/07900627.2013.847710   DOI
14 Holdaway, R. J., A. D. Sparrow, and D. A. Coomes, 2010: Trends in entropy production during ecosystem development in the Amazon Basin. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 365(1545), 1437-1447. https://doi.org/10.1098/rstb.2009.0298   DOI
15 Humes, K. S., W. P. Kustas, M. S. Moran, W. D. Nichols, and M. A. Weltz, 1994: Variability of emissivity and surface temperature over a sparsely vegetated surface. Water Resources Research 30(5), 1299-1310. https://doi.org/10.1029/93wr03065   DOI
16 Irmak, A., K. Singh, R., A. Walter-Shea, E., B. Verma, S., E. Suyker, A., 2011: Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods. Transactions of the ASABE 54(1), 67-80. https://doi.org/10.13031/2013.36261   DOI
17 Kim, J., S. B. Verma, and R. J. Clement, 1992: Carbon dioxide budget in a temperate grassland ecosystem. Journal of Geophysical Research: Atmospheres 97(D5), 6057-6063.   DOI
18 Kuglitsch, F. G., M. Reichstein, C. Beer, A. Carrara, R. Ceulemans, A. Granier, I. A. Janssens, B. Koestner, A. Lindroth, D. Loustau, G. Matteucci, L. Montagnani, E. J. Moors, D. Papale, K. Pilegaard, S. Rambal, C. Rebmann, E. D. Schulze, G. Seufert, H. Verbeeck, T. Vesala, M. Aubinet, C. Bernhofer, T. Foken, T. Grunwald, B. Heinesch, W. Kutsch, T. Laurila, B. Longdoz, F. Miglietta, M. J. Sanz, R. and Valentini, 2008: Characterisation of ecosystem wateruse efficiency of european forests from eddy covariance measurements. Biogeosciences Discuss 2008, 4481-4519. https://doi.org/10.5194/bgd-5-4481-2008
19 Kleidon, A., and S. Schymanski, 2008: Thermodynamics and optimality of the water budget on land: A review. Geophysical Research Letters 35(20). https://doi.org/10.1029/2008gl035393
20 Kranz, W. L., S. Irmak, S. J. Van Donk, C. D. Yonts, and D. L. Martin, 2008: Irrigation management for corn. Neb Guide, University of Nebraska, Lincoln 10(5), 1-8.
21 Lin, H., M. Cao, P. Stoy, and Y. Zhang, 2009: Assessing self-organization of plant communities-A thermodynamic approach. Ecological Modelling 220, 784-790. https://doi.org/10.1016/j.ecolmodel.2009.01.003   DOI
22 Massman, W. J., 1991: The attenuation of concentration fluctuations in turbulent flow through a tube. Journal of Geophysical Research: Atmospheres 96(D8), 15269-15273. https://doi.org/10.1029/91jd01514   DOI
23 McCaughey, J. H., and W. L. Saxton, 1988: Energy balance storage terms in a mixed forest. Agricultural and Forest Meteorology 44(1), 1-18. https://doi.org/10.1016/0168-1923(88)90029-9   DOI
24 Moore, T. R., and R. Knowles, 1989: The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian Journal of Soil Science 69(1), 33-38. https://doi.org/10.4141/cjss89-004   DOI
25 Patzek, T. W., 2008: Thermodynamics of Agricultural Sustainability: The case of US maize agriculture. Critical Reviews in Plant Sciences 27(4), 272-293. https://doi.org/10.1080/07352680802247971   DOI
26 NASS, 2007: Census of Agriculture: Farm and Ranch Irrigation Survey. in U. N. A. S. Service, editor., Washington, D.C.
27 Nguy-Robertson, A., A. Suyker, and X. Xiao, 2015: Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agricultural and Forest Meteorology 213, 160-172. https://doi.org/10.1016/j.agrformet.2015.04.008   DOI
28 Odum, E. P., 1969: The strategy of ecosystem development. Science 164(3877), 262-270. https://doi.org/10.1126/science.164.3877.262   DOI
29 Rosenberg, N. J., 1987: Climate of the great plains region of the United States. Great Plains Quarterly 7(1), 22-32.
30 Rosenberg, N. J., B. L. Blad, and S. B. Verma, 1983: Microclimate: The Biological Environment, 2nd Edition. Wiley, USA.
31 Ruddell, B. L., and P. Kumar, 2009: Ecohydrologic process networks: 1. Identification. 45(3), https://doi.org/10.1029/2008WR007279
32 Schneider, E. D., and J. J. Kay, 1994: Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling 19(6), 25-48. https://doi.org/10.1016/0895-7177(94)90188-0   DOI
33 Steinborn, W., and Y. Svirezhev, 2000: Entropy as an indicator of sustainability in agro-ecosystems: North Germany case study. Ecological Modelling 133(3), 247-257. https://doi.org/10.1016/S0304-3800(00)00323-9   DOI
34 Suyker, A. E., and S. B. Verma, 2010: Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize-soybean cropping systems and water productivity. Agricultural and Forest Meteorology 150(4), 553-563. https://doi.org/10.1016/j.agrformet.2010.01.020   DOI
35 Suyker, A. E., and S. B. Verma, 1993: Eddy correlation measurement of $CO_2$ flux using a closed-path sensor: Theory and field tests against an open-path sensor. Boundary-Layer Meteorology 64(4), 391-407. https://doi.org/10.1007/bf00711707   DOI
36 Suyker, A. E., and S. B. Verma, 2001: Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie. Global Change Biology 7(3), 279-289. https://doi.org/10.1046/j.1365-2486.2001.00407.x   DOI
37 Suyker, A. E., and S. B. Verma, 2008: Interannual water vapor and energy exchange in an irrigated maizebased agroecosystem. Agricultural and Forest Meteorology 148(3), 417-427. https://doi.org/10.1016/j.agrformet.2007.10.005   DOI
38 Suyker, A. E., and S. B. Verma, 2012: Gross primary production and ecosystem respiration of irrigated and rainfed maize-soybean cropping systems over 8 years. Agricultural and Forest Meteorology 165, 12-24. https://doi.org/10.1016/j.agrformet.2012.05.021   DOI
39 Suyker, A. E., S. B. Verma, G. G. Burba, and T. J. Arkebauer, 2005: Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agricultural and Forest Meteorology 131(3), 180-190. https://doi.org/10.1016/j.agrformet.2005.05.007   DOI
40 Verma, S. B., A. Dobermann, K. G. Cassman, D. T. Walters, J. M. Knops, T. J. Arkebauer, A. E. Suyker, G. G. Burba, B. Amos, H. Yang, D. Ginting, K. G. Hubbard, A. A. Gitelson, and E. A. Walter-Shea, 2005: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology 131(1), 77-96. https://doi.org/10.1016/j.agrformet.2005.05.003   DOI
41 Wang, T., X. Tang, C. Zheng, Q. Gu, J. Wei, and M. Ma, 2018: Differences in ecosystem water-use efficiency among the typical croplands. Agricultural Water Management 209, 142-150. https://doi.org/10.1016/j.agwat.2018.07.030   DOI
42 Wilhelmi, O. V., and D. A. Wilhite, 2002: Assessing vulnerability to agricultural drought: A Nebraska case study. Natural Hazards 25(1), 37-58. https://doi.org/10.1023/a:1013388814894   DOI
43 Wilson, K., and D. Baldocchi, 2000: Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agricultural and Forest Meteorology 100, 1-18. https://doi.org/10.1016/S0168-1923(99)00088-X   DOI
44 Wofsy, S. C., M. L. Goulden, J. W. Munger, S. M. Fan, P. S. Bakwin, B. C. Daube, S. L. Bassow, and F. A. Bazzaz, 1993: Net exchange of $CO_2$ in a midlatitude forest. Science 260, 1314-1317.   DOI
45 Yang, Y., M. C. Anderson, F. Gao, B. Wardlow, C. R. Hain, J. A. Otkin, J. Alfieri, Y. Yang, L. Sun, and W. Dulaney, 2018: Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA. Remote Sensing of Environment 210, 387-402. https://doi.org/10.1016/j.rse.2018.02.020   DOI
46 Kay, J., 1984: Self-organization in living systems. University of Waterloo, Waterloo, Ontario, Canada.
47 Yun, J., M. Kang, S. Kim, J. Hwa Chun, C.-H. Cho, and J. Kim, 2014: How is the process network organized and when does it show emergent properties in a forest ecosystem? In: Sanayei, A., I. Zelinka, and O. E. Rossler, (Eds) ISCS 2013: Interdisciplinary Symposium on Complex Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 307-317.
48 Campbell, G. S., and J. Norman, 1998: An introduction to environmental biophysics. Springer-Verlag New York.
49 Force, D. T., 2013: An interpretation of the origins of the 2012 central great plains drought.
50 Suyker, A., 2016: AmeriFlux US-Ne1 Mead - irrigated continuous maize site.
51 USDA, 2019: Crop Production 2018 Summary. in U. S. D. o. Agriculture, editor.