• Title/Summary/Keyword: lasers

Search Result 892, Processing Time 0.025 seconds

Widely Tunable Grating Cavity Lasers

  • Kwon, Oh-Kee;Sim, Eun-Deok;Kim, Kang-Ho;Kim, Jong-Hoi;Yun, Ho-Gyeong;Kwon, O-Kyun;Oh, Kwang-Ryong
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.545-554
    • /
    • 2006
  • A widely tunable multi-channel grating cavity laser is proposed and experimentally demonstrated. The device is implemented in Littman configuration with an echelle grating based on Rowland circle construction and realized by monolithically integrating all elements in an InP substrate. Lasing wavelength is selected by turning on an amplifier and the appropriate channel element in the array, and it is tuned by controlling light deflection electrically. The 6-channel device exhibits a tuning range of about 50 nm with a side mode suppression ratio of more than 30 dB. This is accomplished by adjusting the applied current of the dispersive element and phase control section.

  • PDF

International and Asian Networks on Intense Laser Science

  • Kato, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.2-7
    • /
    • 2009
  • This paper reviews evolution of the research networks on intense laser science under international and Asian frameworks during 2000 to 2008. The OECD Global Science Forum Steering Committee on Compact, High-Intensity Short-Pulse Lasers led to the establishment of the International Union of Pure and Applied Physics (IUPAP) Working Group: International Committee on Ultrahigh Intensity Lasers (ICUIL) and the Asian Intense Laser Network (AILN) in 2004. Through various activities under AILN such as the Asian Symposium on Intense Laser Science (ASILS), the Asian Summer School on Laser Plasma Acceleration and Radiation, and the High-Order Harmonics Workshops, closer relations are being formed among the scientists and also among the young generations working in intense laser science in the Asian regions.

Phase Stability of Injection-Locked Beam of Semiconductor Lasers (Injection-Locking된 반도체 레이저 광파의 위상 안전성)

  • 권진혁;김도훈
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.191-197
    • /
    • 1990
  • An experiment on the phase stability of injection-locked beam is done by using AlGaAs semiconductor lasers. The coherence of two beams from the master and slave lasers is measured by interference between the beams in the Twymann-Green interferometer. The phase change of the output beam of the slave laser as a function of the driving current is measured in the Mach-Zehnder interferometer consisted of the master and slave lasers and a value of 2.5radlmA is obtainccl.

  • PDF

Ultrafast Femtosecond Lasers: Fundamentals and Applications (펨토초 레이저의 원리 및 응용)

  • Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Man;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.7-16
    • /
    • 2010
  • Physical fundamentals of ultrashort femtosecond lasers are addressed along with emerging applications for precision manufacturing and metrology. Femtosecond lasers emit short pulses whose temporal width is in the range of less than a picosecond to a few femtoseconds, thereby enabling extremely high peak-power machining with less thermal damages. Besides, the broad spectral bandwidth of femtosecond lasers constructed in the form of frequency comb permits absolute distance measurements leading to ultraprecision positioning control and dimensional metrology.

Amplitude Modulation Response and Linearity Improvement of Directly Modulated Lasers Using Ultra-Strong Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers

  • Sung, Hyuk-Kee;Wu, Ming C
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.303-308
    • /
    • 2008
  • Directly modulated fiber-optic links generally suffer higher link loss and larger signal distortion than externally modulated links. These result from the electron-photon conversion loss and laser modulation dynamics. As a method to overcome the drawbacks, we have experimentally demonstrated the RF performance of directly modulated, ultra-strong injection-locked gain-lever distributed Bragg reflector (DBR) lasers. The free-running DBR lasers exhibit an improved amplitude modulation efficiency of 12.4 dB under gain-lever modulation at the expense of linearity. By combining gain-lever modulation with ultra-strong optical injection locking, we can gain the benefits of both improved modulation efficiency from the gain-lever effect, plus improved linearity from injection locking. Using an injection ratio of R=11 dB, a 23.4-dB improvement in amplitude response and an 18-dB improvement in spurious-free dynamic range have been achieved.

Safety Principles in the Application of Lasers in Energy-based Aesthetic Procedures from the Nurse's Perspective

  • Kim, Youn Jeong
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • Recently, various lasers and energy-based devices (EBDs) have been widely used in aesthetic procedures. Although using lasers and energy-based aesthetic procedures presents a potential risk to doctors, nurses, and patients, aesthetic procedures tend to be performed without the necessary precautions. For injury prevention, it is essential to follow safety rules and be aware of potential accidents. Furthermore, it is important to understand the basic principles of the devices, including the different optical and electrical properties. Acquiring the exact knowledge to control a device is important for two reasons; to maintain a safer operating environment and prolong the lifespan of expensive devices. This review briefly summarizes the knowledge needed for better and safer aesthetic procedures and the proper control of aesthetic devices.

Two-Dimensional Photonic Crystal Lasers (2차원 광자결정 레이저)

  • Lee, Y. H.;J. K. Hwang;H. Y. Ryu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.96-98
    • /
    • 2000
  • Room-temperature continuous operation of two-dimensional photonic crystal lasers is achieved at 1.6 ${\mu}{\textrm}{m}$ by using InGaAsP slab-waveguide triangular photonic crystal on top of wet-oxidized aluminum oxide. The main difficulty in the realization of photonic bandgap (OBG) structures has been the nontrivial difficulties in nanofabrication, especially for 3-dimensional PBG structures. Recently, 2-D PBG structures have attracted a great deal of attention due to their simplicity in fabrication and theoretical study as compared to the three-dimensional counterparts [1]. Recently, air-gulfed 2-D slab PBG lasers were reported by Caltech group [2]. However, this air-slab structure is mechanically fragile and thermally unforgiving. Therefore, a new structure that can remove this thermal limitation is dearly sought after for 2-D PBG laser to have practical meaning. In this talk, we report room-temperature continuous operation of 2-D photonic bandgap lasers that are thermally and mechanically stable.

  • PDF

Optogalvanic Spectroscopy of U, Th and Rb using Diode Lasers (반도체 다이오드 레이저를 사용한 U, Th 및 Rb 의 Optogalvanic Spectroscopy 에 관한 연구)

  • Lee, Sang Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • First observation of uranium using a diode laser was published recently. The experiment was performed by the optogalvanic spectroscopy using diode lasers. A laser source causes the current change in a hollow cathode discharge lamp when metal atoms in plasma absorb the diode laser light. The optogalvanic signal is collected by detecting the current change. This work is the extended investigation of our previous research, the uranium detection using a diode laser. New electronic transitions of uranium and thorium in 775∼850 nm were investigated using diode lasers. In addition, the Rb(Ⅰ) optogalvanic spectra at 780.02 nm and 794.76 nm were studied. The Rb(Ⅰ) spectrum at 780.02 nm showed the isotopic features and hyperfine splittings. This work provides a key idea that the diode lasers are useful in the specrochemical analysis of the radioactive actinides that have a rich spectrum with transitions which can be easily reached with AlGaAs diode lasers. Also, this study shows that the diode lasers can be an important tool to find the spectroscopic parameters of actinides and rare earth elements which have not known.

  • PDF

Effects of the Random Fluctuation in Grating Period on the Characteristics of DFB Lasers (회절격자 주기의 랜덤 변이가 DFB 레이저 특성에 미치는 영향)

  • Han, Jae-Woong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.76-85
    • /
    • 2000
  • Effects of the random fluctuation in grating half-period have been studied by an effective index transfer matrix method in DFB lasers. The laser facets are assumed to be perfectly antireflection coated, and the period fluctuation is modeled as a Gaussian random variable. The random fluctuation breaks spectral symmetry in both uniform-grating and quarter-wavelength -shifted(QWS) DFB lasers, and decreases the effective coupling coefficient. This leads to increased average mirror loss of ${\pm}$1 modes and reduced stopband width in uniform grating DFB lasers, and degradation in the wavelength accuracy and the single mode stability in QWS-DFB lasers. Threshold gain difference decreases with increasing period fluctuation irrespective of grating coupling coefficient in QWS-DFB lasers, while spatial hole-burning effect is exacerbated or alleviated when the normalized coupling coefficient is lower and higher than 1.5, respectively.

  • PDF