• Title/Summary/Keyword: laser measurement

Search Result 2,033, Processing Time 0.043 seconds

Am Experimental Study on Measurement of Number Density and Temperature Distributions in $C_3H_8/O_2$ Flame by UV Laser Rayleigh Scattering (UV Laser Rayleigh Scattering을 이용한 $C_3H_8/O_2$ 화염에서 가스 성분의 농도 및 온도 분포 계측에 관한 실험적 연구)

  • Jin, S. H;Nam, G. J.;Kim, H. S.;Chang, N. K.;Park, S. H.;Kim, U.;Park, K. S.;Kim, G. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.60-68
    • /
    • 1997
  • Rayleigh Scattering Cross Sections($\sigma$i) of various gases and the temperature distributions of premixes C3H8/O2 flame are measured by high power KrF(248nm) Exci- mer laser and ICCD camera. Results show that $\sigma$i of O2 and Propane(C3H8) gases agree well in the 5% error range, but of H2 has the more or less difference from the calcul- ated value by other groups. This is attributed to the low RS signal of H2 to Nosie level(S/N ratio). The temperature distributions of flame range out between 300K in the air and about 2000K in the burned area. In this temperature range, out system has the about 250K temperature resolution. Because low RS signals in the reaction area with high temperature are affected highly by noises, temperature uncertainty of this area is relatively high to another part of flame. Experimental results show that UV Rayleigh Scattering can be used for the measurement of mixing ratio of mixed gases and the temperature distributions of flame. Especially, this technique can be applied for the measurement of the mixing ratio of air/fuel before the ignition and the flame structure after the ignition inside the Engine.

  • PDF

Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer (레이저진동계를 사용한 동조액체댐퍼의 액체 진동 측정)

  • Shin, Yoon-Soo;Min, Kyung-Won;Kim, Junhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.513-519
    • /
    • 2016
  • In this study, dynamic vertical displacement of liquid in the tuned liquid column damper(TLCD) is measured by a laser Doppler vibrometer(LDV) to overcome limitations of existing sensors and to leverage noncontact sensing. Addressing advantages of noncontact measurements, operational principles of the LDV to measure velocity and displacement of a target object in motion is explained. The feasibility of application of the LDV to measurement of liquid motion in the TLCD is experimentally explored. A series of shake table tests with the TLCD are performed to determine requirements of application of the LDV. Based on the experimental results, it is proved that the LDV works under the condition of adding dye to the liquid by increasing the intensity of reflected laser and thus validity is verified by comparison with a conventional wave height meter.

An Implementation of a GPIAS Measurement System for Animal Tinnitus Detection and Study on Effect of Starting Point of Stimulus Background Sound on Startle Response (동물 이명 검사용 GPIAS 측정 장치 구현과 이를 통한 자극 배경음의 시작 시점이 놀람 반응에 주는 영향)

  • Jeon, Poram;Jung, Jae Yun;Lee, Seung-Ha;Park, Ilyong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.410-414
    • /
    • 2013
  • As one of the effective methods for researching the objective tinnitus detection, the GPIAS (Gap Pre-pulse Inhibition of Acoustic Startle) measurement has been used to verify the existence of animal tinnitus objectively. The level and pattern of the background sound presented prior to a startle pulse are closely related with the GPIAS results. But the effect of the starting point of the background sound on animal startle responses has not been reported yet. In this paper, we present the implementation of a GPIAS measurement system based on an unconstrained enclosure to avoid animals' excessive constraint stress and deal with the animals' growth. After the performance of our implemented system has been tested through the animal experiment using 4 SD-rats, the effect of starting point of stimulus background sound on the startle response has been studied by the use of our implemented system. Through the results, it is verified that our system can measure the inhibition of animal startle responses due the gap pre-pulse for GPIAS calculation and the background sound starting point does not significantly effect on the startle response and the GPIAS values if the background sound continues for more than 300msec before a gap pre-pulse is presented.

Development and Uncertainty Evaluation of New Piston (새로운 개념의 피스톤 푸루버 개발 및 불확도 평가)

  • Choi, Hae Man;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.354-359
    • /
    • 2002
  • The new piston prover was developed and the flow measurement uncertainty of this piston prover was evaluated according to ISO/IEC 17025. The laser interferometer was employed to measure accurately the testing time. Uncertainty was calculated with evaluation of various uncertainty factors affected in flow measurement. The expanded uncertainty(U) of the piston Over was $1.3{\times}10^{-3}$ (at the confidence level of $95\%$). This evaluation example will be useful in flow measurement uncertainty determination of other gas flow measurement system.

  • PDF

Manufacture of Daily Check Device and Efficiency Evaluation for Daily Q.A (일일 정도관리를 위한 Daily Check Device의 제작 및 효율성 평가)

  • Kim Chan-Yong;Jae Young-Wan;Park Heung-Deuk;Lee Jae-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Purpose : Daily Q.A is the important step which must be preceded in a radiation treatment. Specially, radiation output measurement and laser alignment, SSD indicator related to a patient set-up recurrence must be confirmed for a reasonable radiation treatment. Daily Q.A proceeds correctness and a prompt way, and needs an objective measurement basis. Manufacture of the device which can facilitate confirmation of output measurement and appliances check at one time was requested. Materials and Methods : Produced the phantom formal daily check device which can confirm a lot of appliances check (output measurement and laser alignment. field size, SSD indicator) with one time of set up at a time, and measurement observed a linear accelerator (4 machine) for four months and evaluated efficiency. Results : We were able to confirm an laser alignment, field size, SSD indicator check at the same time, and out put measurement was possible with the same set up, so daily Q.A time was reduced, and we were able to confirm an objective basis about each item measurement. As a result of having measured for four months, output measurement within ${\pm}2%$, and measured laser alignment, field size, SSD indicator in range within ${\pm}1mm$. Conclusion : We can enforce output measurement and appliances check conveniently, and time was reduced and was able to raise efficiency of business. We were able to bring a cost reduction by substitution expensive commercialized equipment. Further It is necessary to makes a product as strong and slight materials, and improve convenience of use.

  • PDF

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.