DOI QR코드

DOI QR Code

An Implementation of a GPIAS Measurement System for Animal Tinnitus Detection and Study on Effect of Starting Point of Stimulus Background Sound on Startle Response

동물 이명 검사용 GPIAS 측정 장치 구현과 이를 통한 자극 배경음의 시작 시점이 놀람 반응에 주는 영향

  • Jeon, Poram (Beckman Laser Institute Korea, Dankook University) ;
  • Jung, Jae Yun (Beckman Laser Institute Korea, Dankook University) ;
  • Lee, Seung-Ha (Beckman Laser Institute Korea, Dankook University) ;
  • Park, Ilyong (Beckman Laser Institute Korea, Dankook University)
  • 전보람 (한국베크만광의료기기연구센터) ;
  • 정재윤 (한국베크만광의료기기연구센터) ;
  • 이승하 (한국베크만광의료기기연구센터) ;
  • 박일용 (한국베크만광의료기기연구센터)
  • Received : 2013.06.26
  • Accepted : 2013.08.13
  • Published : 2013.11.29

Abstract

As one of the effective methods for researching the objective tinnitus detection, the GPIAS (Gap Pre-pulse Inhibition of Acoustic Startle) measurement has been used to verify the existence of animal tinnitus objectively. The level and pattern of the background sound presented prior to a startle pulse are closely related with the GPIAS results. But the effect of the starting point of the background sound on animal startle responses has not been reported yet. In this paper, we present the implementation of a GPIAS measurement system based on an unconstrained enclosure to avoid animals' excessive constraint stress and deal with the animals' growth. After the performance of our implemented system has been tested through the animal experiment using 4 SD-rats, the effect of starting point of stimulus background sound on the startle response has been studied by the use of our implemented system. Through the results, it is verified that our system can measure the inhibition of animal startle responses due the gap pre-pulse for GPIAS calculation and the background sound starting point does not significantly effect on the startle response and the GPIAS values if the background sound continues for more than 300msec before a gap pre-pulse is presented.

Keywords

References

  1. S. H. Jeong, S. H. Kang, Z. N. Lee, B. J. Kang, and H. D. Rim, "Review of psychiatric approaches to tinnitus", J Korean Society of Biological Therapies in Psychiatry, Vol. 3, No. 2, 1997.
  2. J. G. Turner, T. J. Brozoski, C. A. Bauer, J. L. Parrish, K. Myers, L. F. Hughes, and D. M. Caspary, "Gap detection deficits in rats with tinnitus: A potential novel screening tool", Behavioral Neuroscience, Vol. 120, No. 1, pp. 188-195, 2006. https://doi.org/10.1037/0735-7044.120.1.188
  3. L. Edward, H. H. Sarah, and L. A. Brian, "The gapstartle paradigm for tinnitus screening in animal models: Limitations and optimization", Hearing Research, Vol. 295, pp.150-160, 2013. https://doi.org/10.1016/j.heares.2012.06.001
  4. C. A. Baeuer, "Animal model of tinnitus." Otolaryngol. Clin. North Am., Vol. 36, No. 2, pp. 267-285, 2003. https://doi.org/10.1016/S0030-6665(02)00171-8
  5. N. R. Swerdlow, M. A. Geyer, and D. L. Braff, "Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges", Psychopharmacology, Vol. 156, pp. 194-215, 2001. https://doi.org/10.1007/s002130100799
  6. M. Fendt, L. Li, and J. S. Yeomans, "Brain stem circuits mediating prepulse inhibition of the startle reflex", Psychopharmacology, Vol. 156, pp. 216-224, 2001. https://doi.org/10.1007/s002130100794
  7. L. Li, Y. Du, N. Li, X. Wu, and Y. Wu "Top-down modulation of prepulse inhibition of the startle reflex in humans and rats", Neurosci. Biobehav. Rev., Vol. 33, pp. 1157-1167, 2009. https://doi.org/10.1016/j.neubiorev.2009.02.001
  8. J, H. Chen, C. R. Watson, Jr., and R. L. Seaman, "Apparatus to detect limb components of startle in rat", Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, Vol. 4, No. 14, pp. 1440-1441, 1992.
  9. D. M. Green and T. G. Forrest, "Temporal gaps in noise and sinusoids", Journal of the Acoustical Society of America, Vol. 86, pp. 961-970, 1989. https://doi.org/10.1121/1.398731
  10. P. J. Jastreboff, J. Brennan, J. K. Coleman, and C. T. Sasaki, "Phantom auditory sensation in rats: an animal model for tinnitus", Behavioral Neuroscience, Vol. 102, pp. 811-822, 1988. https://doi.org/10.1037/0735-7044.102.6.811
  11. M. Koch and H. U. Schnitzler, "The acoustic startle response in rats: Circuits mediating evocation, inhibition and potentiation", Behavioral Brain Research, Vol. 89, pp. 35-49, 1997. https://doi.org/10.1016/S0166-4328(97)02296-1
  12. A. Denga, J. Lua, and W. Sun, "Temporal processing in inferior colliculus and auditory cortex affected by high doses of salicylate", Brain Research, Vol. 1344, pp. 96-103, 2010. https://doi.org/10.1016/j.brainres.2010.04.077
  13. G. D. Lee, J. W. Lee, B. S. Song, S. H. Lee, J. H. Cho, and M. N. Kim, "Design and implementation of a control lable white noise generator for tinnitus therapy", J. Sensor Sci. & Tech., Vol. 13, No. 1, pp. 12-19, 2004. https://doi.org/10.5369/JSST.2004.13.1.012
  14. S. Y. Bae and S. H. Yi, "Driving information system of bicycle by using 3-axis acceleration sensor", J. Sensor Sci. & Tech., Vol. 21, No. 3, pp. 198-203, 2012. https://doi.org/10.5369/JSST.2012.21.3.198
  15. J. Y. Yoo, G. C. Park, A. Y. Jeon, C. H. Kim, Y. J. Kim, J. H. Ro, and G. R. Jeon, "Wireless vibration measurement system using a 3-axial accelerometer sensor", J. Sensor Sci. & Tech., Vol. 20, No. 2, pp. 131-136, 2011. https://doi.org/10.5369/JSST.2011.20.2.131