• Title/Summary/Keyword: laser intensity

Search Result 779, Processing Time 0.028 seconds

A Study on Roughness Measurement of Polished Surfaces Using Reflected Laser Beam Image (레이저빔 반사 화상을 이용한 연마면 거칠기 측정법에 관한 연구)

  • Shen, Yun-Feng;Lim, Han-Seok;Kim, Hwa-Young;Ahn , Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.145-152
    • /
    • 1999
  • This paper presents the principle and experimental results of a non-contact surface roughness measurement by means of screen projected pattern of lase beam reflected from a polished surface. In the reflected laser beam pattern especially from a fine surface like ground or polished one, light intensity varies from the center fo the image to its boundary as the Gaussian distribution. The standard deviation of a light intensity distribution is assumed to be a good non-contact estimator for measuring the surface roughnes, because the light reflectivity is known to be well related with the surface roughness. This method doesn't need to discriminate between the specularly reflected light and the diffusely reflected one, whereas the scattered laser intensity method must do. Nor it needs to adjust the change of light intensity caused by environmental lights or specimen materials. Reflected laser beam pattern narrowly spreads out in the vertical direction to tiny scratches on the polished surface due to abrasives. The deeper the scratch the more the dispersion, which means the rougher surface. The standard deviation of the pattern is nearly in proportion to the surface roughness. Measurement errors by this method are shown to be below 10 percent compared with those obtained by a common contact method. The inclination of measuring unit from the normal axis causes the measurement errors up to 10 percent for an angle of 4 degree. Therefore the proposed method can be used as an on-the-machine quick roughness estimator within 10 percent measurement error.

  • PDF

The Measurement Method of Reflected Intensity of Radiation for High Precision Laser Range Finder (고정밀 레이저 변위기용 반사 광량 측정 기법)

  • Bae, Young-Chul;Cho, Eui-Joo;Lee, Hyen-Jae;Kim, Sung-Hyen;Kim, Hyeon-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • The phase delay of output signal of APD(avalanche photo diode) caused by intensity of reflected light which comes from target. These difference of phase delay is an one of the main reason of measurement error, but there is no reasonable measurement meter and method to detect it. In this paper, to solve the problem, we propose and implement a method to measure the intensity of radiation. The method measures DC voltage which is proportional to the reflected intensity of radiation and come out from APD in receiver by realtime.

  • PDF

Local Magnetization Reversal of FeMn/NiFe Films Using Laser Annealing (Laser 열처리를 이용한 FeMn/NiFe 박막의 자화 반전)

  • Choi, S.D.;Jin, D.H.;Kim, S.W.;Kim, Y.S.;Lee, K.A.;Lee, S.S.;Hwang, D.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.228-231
    • /
    • 2004
  • We have studied local magnetization reversal and magnetic properties induced by Laser annealing method in the strip-patterned Ta/NiFe/FeMn/Ta and Ta/NiFe/FeMn/NiFe/Ta multilayers fabricated by ion-beam deposition. The films were exposed to the emission of the DPSS (Diode Pumped Solid State, Nd:YAG) laser under 600 G. The laser beam intensity increased up to 440 mW. When the laser illuminated the patterned film with the power of above 200 m W, the intensity of MR peak located in +87 Oe shrunk. A new MR peak was generated at -63 Oe. When the laser power is 400 mW, the location of positive MR peak(H$\sub$ex/) was changed slightly from +87 Oe to +76 Oe, and the MR ratio was decreased from 0.9% to 0.1 %. On the other hand, the new (negative) MR peak shifted from -63 Oe to -80 Oe, with the MR ratio increased up to 0.3%. As the illuminated area expanded, the intensity of opposite MR peak increased and it of negative MR peak decreased. This proved that the local reversal of exchange biasing should be realized by laser annealing.

Penetration depth and Wave Propagation in Random Media (무질서한 매질에서 침투깊이와 파동 전파)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.70-76
    • /
    • 2006
  • The influence of fluorophor, scatterer, absorber in turbid materials by light scattering were interpreted for the scattered fluorescence intensity and wavelength, it is studied the molecular property by laser induced fluorescence spectroscopy. It can be found that the effects of optical property are penentrated in scattering media by the optical $parameters({\mu}s$, ${\mu}a$, ${\mu}t$, ${\gamma}$, ${\rho})$. The value of scattering coefficient ${\mu}s$ is large appeared by means of the increasing particles of scattering, it can be found that the slope appears exponentially as a function of distance from laser source to detector. It may also utilize in designing the best model for oil chemistry, laser medicine and application of medical engineering.

A Novel Robot Sensor System Utilizing the Combination Of Stereo Image Intensity And Laser Structured Light Image Information

  • Lee, Hyun-Ki;Xingyong, Song;Kim, Min-Young;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.729-734
    • /
    • 2005
  • One of the important research issues in mobile robot is how to detect the 3D environment fast and accurately, and recognize it. Sensing methods of utilizing laser structured light and/or stereo vision are representatively used among a number of methodologies developed to date. However, the methods are still in need of achieving high accuracy and reliability to be used for real world environments. In this paper to implement a new robotic environmental sensing algorithm is presented by combining the information between intensity image and that of laser structured light image. To see how effectively the algorithm applied to real environments, we developed a sensor system that can be mounted on a mobile robot and tested performance for a series of environments.

  • PDF

Quantitative Measurements of Soot Particles in a Laminar Diffusion Flame Using a LII/LIS Technique (LII/LIS 기법을 이용한 층류확산화염 매연입자의 정량화)

  • Chung, J.W.;Lee, W.;Han, Y.T.;Kim, B.S.;Lee, C.B.;Kim, D.J.;Lee, K.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.113-121
    • /
    • 2002
  • The distribution of volume fraction, mean diameter and number density of soot particles are measured quantitatively in a co-flow ethylene diffusion flame using a simultaneous LII/LIS measurement technique. The LII/LIS system and the measured values are, respectively, calibrated and evaluated by comparing to the informations obtained from laser light. extinction/scattering experiments, LII signal shows some sensitivity to the laser light intensity when laser power density exceeds a certain value(threshold). It is also found that there is an optimal laser intensity and a delay time in order to obtain the best result using the simultaneous LII/LIS measurement technique.

  • PDF

Measurement of Wire Displacement of WEDM using He-Ne laser (He-Ne 레이저를 이용한 와이어 방전가공기의 와이어 변위 측정)

  • 홍준모;전병철;조용무;유웅재;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.414-419
    • /
    • 1995
  • The wire displacement of wire electric discharge machine has been measured using He-Ne laser. A measurement system consisted of He-Ne laser, A/D converter, 4 divided photodiode, amplifier, sensor process instrument, and personal computer. The processing parameters were varid with feed rate, wire tension, wire speed and voltage. The laser beam intensity transmitted on a 4 divided photodiode was varied by processing wire electric descharge machine with various process parameters. The 4 divided photodiode and amplifier were used to change the detected beam intensity into voltage. Variation of wire displacement was between 11 and 125 .mu. m. The wire tension was dominant on the variation of wire displacement among many parameters.

  • PDF

Control of Size and Morphology of Particles Using CO2 Laser in a Flame (화염증 CO2 Laser를 이용한 입자의 크기 및 형상 제어)

  • Lee, Donggeun;Lee, Seonjae;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1379-1389
    • /
    • 1999
  • A new technique for control of size and shape of flame-made particles is Introduced. The characteristic sintering time can be controlled Independently of collision time by heating the particles with irradiation of laser because the sintering time strongly depends on temperature. A coflow oxy-hydrogen diffusion flame burner was used for $SiCl_4$ conversion to silica particle. Nanometer sized aggregates irradiated by a high power CW $CO_2$ laser beam were rapidly heated up to high temperatures and then were sintered to approach volume-equivalent spheres. The sphere collides much slower than the aggregate, which results in reduction of sizes of particles maintaining spherical shape. Light scattering of Ar ion laser and TEM observation using a local sampling device were used to confirm the above effects. When the $CO_2$ laser was irradiated at low position from the burner surface, particle generation due to gas absorption of laser beam occurred and thus scattering intensity increased with $CO_2$ laser power. At high irradiation position, scattering intensity decreased with $CO_2$ laser power and TEM image showed a clear mark of evaporation and recondensation of particles for high $CO_2$ laser power. When the laser was irradiated between the above two positions where small aggregates exist, average size of spherical particles obviously decreased to 58% of those without $CO_2$ laser irradiation with the spherical shape. Even for increased carrier gas flow rate by a factor of three, TEM photograph also revealed considerable reduction of particle size.

Adjustment of Exterior Orientation of the Digital Aerial Images using LiDAR Points

  • Yoon, Jong-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.485-491
    • /
    • 2008
  • LiDAR systems are usually incorporated a laser scanner and GPS/INS modules with a digital aerial camera. LiDAR point clouds and digital aerial images acquired by the systems provide complementary spatial information on the ground. In addition, some of laser scanners provide intensity, radiometric information on the surface of the earth. Since the intensity is unnecessary of registration and provides the radiometric information at a certain wavelength on the location of LiDAR point, it can be a valuable ancillary information but it does not deliver sufficient radiometric information compared with digital images. This study utilize the LiDAR points as ground control points (GCPs) to adjust exterior orientations(EOs) of the stereo images. It is difficult to find exact point of LiDAR corresponding to conjugate points in stereo images, but this study used intensity of LiDAR as an ancillary data to find the GCPs. The LiDAR points were successfully used to adjust EOs of stereo aerial images, therefore, successfully provided the prerequisite for the precise registration of the two data sets from the LiDAR systems.

Measured Intensity Control Method of a Phase-shift Measurement Based Laser Scanner by using APD Bias Voltage Characteristic (위상 검출 방식 레이저 스캐너의 APD bias 전압 특성을 이용한 검출신호세기 제어 방법)

  • Jang, Jun-Hwan;Yoon, Hee-Sun;Hwang, Sung-Ui;Park, Kyi-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1096-1100
    • /
    • 2012
  • In the phase-shift measurement method, the distance light travels can be obtained based on the phase difference between the reference signal and the measured signal. When the object having various colors is measured, the intensity of the measured signal much varies even at the same distance, and it causes different phase delay due to wide dynamic range input to a signal processing circuit. In this work, an measured intensity control method is proposed to solve this phase delay problem.