• Title/Summary/Keyword: laser etching

Search Result 256, Processing Time 0.022 seconds

Tensile Bond Strength of Composite Resin Treated with Er:YAG Laser (Er:YAG 레이저를 활용한 와동형성시 컴포짓 결합강도)

  • Shin, Min;Ji, Young-Duk;Rhu, Sung-Ho;Cho, Jin-Hyoung
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.2
    • /
    • pp.269-276
    • /
    • 2005
  • This in vitro study evaluated the influence of a flowable composite resin on the tensile bond strength of resin to enamel and dentin treated with Er:YAG laser and diamond bur. 96 Buccal enamel and mid-coronal dentin were laser-irradiated using an Er:YAG laser and treated with diamond bur. Each groups(48) were divided two small groups depends on acid-etching procedure. Light-cure flowable resin(Metafil Flo) and self-cure resin(Clearfil FII New Bond) were used in this study. After surface etching with 37% phosphoric acid and the application of an adhesive system, specimens were prepared with a hybrid composite resin. After 24hours storage in distilled water at 37$^{\circ}C$, all samples were submitted to the tensile bond strength evaluation, using a universal testing machine(Z020, Zwick, Germany). The obtained results were as follows: 1. TBS of acid-etching group were higher than those of non-etching group in both enamel and dentin treated with Er:YAG laser and diamond bur. Laser 'conditioning' was clearly less effective than acid-etching. Moreover, acid etching lased enamel and dentin significantly improved the microTBS of M-Flo. 2. In enamel, TBS of laser-irradiated group were lower than those of bur-prepared group. However, in flowable resin subgroup, there were not differed those between two groups in dentin. 3. In laser-treated group, TBS of flowable composite resin were higher than those of self-curing resin in dentin, however, there was no difference in enamel. From this study, we can conclude that the self- and light-cure composite resin bonded significantly less effective to lased than to bur-cut enamel and dentin, and that acid-etch procedure remains mandatory even after laser ablation. We suggest that Er:YAG laser was useful for preparing dentin cavity with flowable resin filling.

Micromachining technology using photosensitive glass (감광성유리를 이용한 마이크로머시닝 기술)

  • Cho, Soo-Je
    • Laser Solutions
    • /
    • v.14 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • Micromachining of photosensitive glass by UV exposure, heat treatment, and etching processes is reported. Like photoresist, the photosensitive glass is also classified into positive and negative types by development characteristics. For the positive type, the exposed area is crystallized and etched away during the etching process in HF solution, whereas the unexposed area is crystallized and etched away for the negative type. The crystallized area of the photosensitive glass has an etch rate approximately 30~100 times faster than that of the amorphous area so that it becomes possible to fabricate microstructures in the glass. Based on the unique properties of glass such as high optical transparency, electrical insulation, and chemical/thermal stability, the glass micromachining technique introduced in this work could be widely applied to various devices in the fields of electronics, bio engineering, nanoelectonics and so on.

  • PDF

ORTHODONTIC BRACKET SHEAR BOND STRENGTH TO Nd:YAG LASER Er:YAG LASER IRRADIATED ENAMEL (Nd : YAG 및 Er : YAG 레이저로 치아표면 조사시 브라켓 전단접착강도에 관한 실험적 연구)

  • Choi, Seung-Hoon;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.27 no.1
    • /
    • pp.141-155
    • /
    • 1997
  • The purpose of this study was to evaluate the effectiveness of the Nd:YAG laser and the Er:YAAG laser on etching enamel for direct bonding of orthodontic bracket. The advantages of laser etching rather than conventional acid etching are to reduce the subsurface demineralization rate, to inhibit the spillage of acid onto uninvolved ""its of enamel, and to save the clinical manipulation time involving drying, trashing and drying again. 189 freshly extracted human premolars were prepared for this research. 165 out of them were divided into 11 groups of 15 teeth. One group was acid etching and the rest groups were irradiated with Nd:YAG laser by four different energy levels(100mj 10pps, 100mj 20pps, 150mj 20pps, 200mj 20pps) and with Er:YAG laser by six different energy levels(60mj 5pps, 60mj 10pps, 100mj 10pps. 200mj 10pps, 200mj l5pps, 400mj 10pps). Shear bond strength was tested with Instron after 24 hours, one week, and three weeks. Twenty-four out of 189 teeth were divided into twelve groups untreated control, acid etching, and ten laser irradiation subgroups. And the ultrastructural enamel surfaces of each group were observed with scanning electron microscope. The results were as follows; 1. The means and the standard deviations of shear bond strength of Nd:YAG and Er:YAU laser irradiation by different energy levels were obtained. 2. Shear bond strengths of Er:YAG laser irradiation groups were higher than those of Nd:YAG laser irradiation groups at the identical energy level. 3. Maximum bond strengths was achieved at the energy of I50mj, 20pps in Nd:YAG laser irradiation groups or 60mj, 10pps in Er:YAG laser irradiation groups. 4. It was acceptible for direct bonding to irradiate lb0mj 20pps with Nd:YAG laser or to irradiate 60mj 10pps with Er:YAG laser considering the results of shear bond strength tests and SEM obsesvation.

  • PDF

INFLUENCE OF THE ENAMEL TREATMENT WITH ER:YAG LASER ON THE MICROLEAKAGE OF PIT AND FISSURE SEALANT (Er:YAG 레이저를 이용한 법랑질 표면처리가 치면열구전색제의 미세누출에 미치는 영향)

  • Lee, Ji-Hyun;Kim, Jae-Moon;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.192-200
    • /
    • 2006
  • The aim of this study was to assess the microleakage underneath a pit and fissure sealant bonded to occlusal surfaces treated by Er:YAG laser To determine the most effective energy density of laser, fourteen specimens were irradiated from 50mJ to 300mJ at 3Hz. After irradiation, the lased specimens were observed under the scanning electron microscope. Thirty six non-carious extracted premolars were randomly assigned to four groups of nine teeth: group 1, no treatment on the occlusal surface; group 2, acid etching for 15 seconds; group 3, Er:YAG laser irradiation; group 4, acid etching followed by Er:YAG laser irradiation. The pits and fissures were sealed with unfilled sealant(Helioseal F) and the specimen teeth were thermo-cycled, immersed in 2% Rhodamine B solution, longitudinally sectioned and analyzed for microleakage with fluorescent microscope. The results were as follows: 1. Er:YAG lased surfaces with 50mJ, 3Hz showed a similar pattern of irregularity with acid etched enamel surfaces 2. The mean microleakage score increased in the order of group 2, 4, 3 and 1. There was no significant difference among group 1, 3 and 4(p>0.05), however group 2 showed significantly less microleakage compared with group 1 and 3. Conclusively, the laser irradiation seemed not enough to replace the acid etching for proper retention of pit and fissure sealants.

  • PDF

A Study on the Surface Characteristics of Injection Mold and Injection Molded Part depending on LGP-Mold Fabrication Methods (도광판 금형의 제작 방법에 따른 사출금형 및 성형품의 표면특성에 관한 연구)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.596-602
    • /
    • 2007
  • LGP (Light Guiding Plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components that affect the product quality of LCD. The optical patterns of LGP(2.2") molds are fabricated by three different methods, namely, (1) laser ablation, (2) chemical etching and (3) LiGA-reflow, respectively. The characteristics of surface patterns and roughnesses of molds and injection molded parts were compared to evaluate the optical characteristics. The optical patterns of injection molded LGP with mold fabricated by LiGA - reflow method showed the best geometric structure. The surface roughness (Ra) of LGP#s with molds fabricated by (1) laser ablation: $Ra={\sim}31nm$, (2) chemical etching: $Ra={\sim}22nm$, and (3) LiGA-reflow: $Ra={\sim}4nm$.

Modeling of Polymer Ablation with Excimer Lasers (폴리머 미세가공을 위한 레이저 어블레이션 모델링)

  • Yoon, Kyung-Koo;Bang, Se-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.60-68
    • /
    • 2005
  • To investigate the effects of beam focusing in the etching of polymers with short pulse Excimer lasers, a polymer etching model of SSB's is combined with a beam focusing model. Through the numerical simulation, it was found that in the high laser fluence region, SSB model considering both photochemical and thermal contribution is considered to be suitable to predict the etched hole shape than a simple photochemical etching model. The average temperature distribution into the substance obtained by assuming 1-D heat transfer is found to be fairly similar to the fluence distribution on the ablated surface. The experimental etching data fur polymers are used to give material properties for ablation model. The fitted etch depth curve gives a nice agreement with the experimental data.

Grating fabrication for DFB laser diode using holographic interferometer system (DFB 레이저 다이오드를 위한 홀로그래픽 시스템을 이용한 회절격자 제작)

  • 강명구;오환술
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.108-113
    • /
    • 1996
  • Periodic gratings for 1.55$\mu$m distributed feedback laser diode (DFB LD) have been fabricated by a holographic interference exposure system using an etalon stabilized Ar ion laser. We obtain a good development condition at developer concentration of 65% and obtain etching rate of 1000$\AA$/min at 20.deg. C by the mixed solution HBr:HNO$_{3}$:H$_{2}$O(1:1:10 in volume ratio). We obtain good first order grating with period of 2400${\AA}[\pm}2{\AA}$ at etching time of 45 sec from grating period and diffraction efficiency measurement, and SEM observation of grating fabricated on InP substrate.

  • PDF

Influence of Surface Roughness on Friction and Wear Characteristics of SUS 321 for Hydraulic Cylinder Parts Application

  • Sung-Jun Lee;Yonghun Jang;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.244-249
    • /
    • 2023
  • This paper presents a comprehensive analysis of the impact of surface roughness on the friction and wear properties of SUS 321, an austenitic stainless steel variant produced using the laser powder bed fusion (LPBF) technique, which is a prevalent additive manufacturing method. After the LPBF fabrication, the specimens go a heat treatment process aimed at alleviating residual stress. Subsequently, they are polished extensively to achieve a refined and smooth surface. To deliberately introduce controlled variations in surface roughness, an etching process is employed. This multi-step method encompassed primary etching in a 3M hydrochloric acid solution, followed by secondary etching in a 35 wt% ferric chloride solution, with varying durations applied to different specimens. A comprehensive evaluation of the surface characteristics ensued, employing precise techniques such as surface roughness measurements and meticulous assessments of water droplet contact angles. Following the surface treatment procedures, a series of friction tests are performed to explore the tribological behavior of the etched specimens. This in-depth investigation reached its peak by revealing valuable insights. It clarified a strong correlation between intentionally altered surface roughness, achieved through etching processes, and the resulting tribological performance of LPBF-fabricated SUS 321 stainless steel. This significantly advances our grasp of material behavior in tribological applications.

Nanofabrication of InP/InGaAsP 2D photonic crystals using maskless laser holographic method (레이저 홀로그래피 방법과 반응성 이온식각 방법을 이용한 InP/InGaAsP 광자 결정 구조 제작)

  • 이지면;이민수;이철욱;오수환;고현성;박상기;박문호
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.309-312
    • /
    • 2004
  • Two-dimensionally arrayed nanocolumn lattices were fabricated by using double-exposure laser holographic method. The hexagonal lattice was formed by rotating the sample with 60 degree while the square lattice by 90 degree before the second laser-exposure. The size and period of nanocolumns could be controlled accurately from 125 to 145 nm in diameter and 220 to 290 nm in period for square lattice by changing the incident angle of laser beam. The reactive ion etching for a typical time of 30 min using CH$_4$/H$_2$ plasma enhanced the aspect-ratio by more than 1.5 with a slight increase of the bottom width of columns.

Characterization of photonic quantum ring devices manufactured using wet etching process (습식 식각 공정을 이용하여 제작된 광양자테 소자의 특성 분석)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.28-34
    • /
    • 2020
  • A structure in which GaAs and AlGaAs epilayers are formed with a metal organic chemical vapor deposition equipment on a GaAs wafer similar to the structure of making a vertical cavity surface emitting laser is used. Photonic Quantum Ring (PQR) devices that are naturally generated by 3D resonance are manufactured by chemically assisted ion beam etching technology, which is a dry etching method. A new technology that can be fabricated has been studied, and as a result, the possibility of wet etching of a solution containing phosphoric acid, hydrogen peroxide and methanol was investigated, and the device fabrication by applying this method are also discussed. In addition, the spectrum of the fabricated optical device was measured, and the results were theoretically analyzed and compared with the wavelength value obtained by the measurement. It is expected that the PQR device will be able to model cells in a three-dimensional shape or be applied to the display field.