• Title/Summary/Keyword: large-scaled structures

Search Result 91, Processing Time 0.028 seconds

Natural Vibration Period of Small-scaled Arch Structure by Shaking Table Test (진동대실험을 통한 축소 아치구조물의 고유진동주기 분석)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2015
  • Large spatial structures can not easily predict the dynamic behavior due to the lack of construction and design practices. The spatial structures are generally analyzed through the numerical simulation and experimental test in order to investigate the seismic response of large spatial structures. In the case of analysis for seismic response of large spatial structure, the many studies by the numerical analysis was carried out, researches by the shaking table test are very rare. In this study, a shaking table test of a small-scale arch structure was conducted and the dynamic characteristics of arch structure are analyzed. And the dynamic characteristics of arch structures are investigated according to the various column cross-section and length. It is found that the natural vibration periods of the small-scaled arch structure that have large column stiffness are very similar to the natural vibration period of the non-column arch structure. And in case of arch structure with large column stiffness, primary natural frequency period by numerical analysis is very similar to the primary natural frequency period of by shaking table test. These are because the dynamic characteristics of the roof structure are affected by the column stiffness of the spatial structure.

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Collapse Behavior of Small-Scaled RC Structures Using Felling Method (전도공법에 의한 축소모형 철근콘크리트 구조물의 붕괴거동)

  • Park, Hoon;Lee, Hee-Gwang;Yoo, Ji-Wan;Song, Jeung-Un;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.381-388
    • /
    • 2007
  • The regular RC structures have been transformed into irregular RC structures by alternate load of RC structures during explosive demolition. Numerical simulation programs have contributed to a better understanding of large displacement collapse behavior during explosive demolition, but there remain a number of problems which need to be solved. In this study, the 1/5 scaled 1, 3 and 5 stories RC structures were designed and fabricated. To consider the collapse possibility of upper dead load, fabricated RC structures were demolished by means of felling method. To observe the collapse behavior of the RC structures during felling, displacement of X-direction (or horizontal), displacement of Z-direction (or vertical) md relative displacement angle from respective RC structures were analyzed. Finally explosive demolition on the scaled RC structures using felling method are carried out, collapse behavior by felling method is affected by upper dead load of scaled RC structures. Displacement of X and Z direction increases gradually to respective 67ms and 300ms after blasting. It is confirmed that initial collapse velocity due to alternate load has a higher 3 stories RC structures than 5 stories.

Large-scaled truss topology optimization with filter and iterative parameter control algorithm of Tikhonov regularization

  • Nguyen, Vi T.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.511-528
    • /
    • 2021
  • There are recently some advances in solving numerically topology optimization problems for large-scaled trusses based on ground structure approach. A disadvantage of this approach is that the final design usually includes many bars, which is difficult to be produced in practice. One of efficient tools is a so-called filter scheme for the ground structure to reduce this difficulty and determine several distinct bars. In detail, this technique is valuable for practical uses because unnecessary bars are filtered out from the ground structure to obtain a well-defined structure during the topology optimization process, while it still guarantees the global equilibrium condition. This process, however, leads to a singular system of equilibrium equations. In this case, the minimization of least squares with Tikhonov regularization is adopted. In this paper, a proposed algorithm in controlling optimal Tikhonov parameter is considered in combination with the filter scheme due to its crucial role in obtaining solution to remove numerical singularity and saving computational time by using sparse matrix, which means that the discrete optimal topology solutions depend on choosing the Tikhonov parameter efficiently. Several numerical examples are investigated to demonstrate the efficiency of the filter parameter control algorithm in terms of the large-scaled optimal topology designs.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

Contarison on the Large-scaled LED Canopy Trend in Korea and other Countries (국내·외 대형 LED캐노피 동향에 관한 고찰)

  • Yang, Woo-Chang;Lee, Hyung-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.187-197
    • /
    • 2012
  • The purpose of the study is to analyze and to clearly put more understanding on the current LED sky screen structures located not only in some cities of Korea but also in those of other countries which have been running the large-scaled LED sky screen, which is also called the LED canopy. In addition, this research is to also focus on the availability or possibility of the social role for the large-scaled LED sky screen to make great contributions to the local economic development of the relevant cities which are currently running their large-scaled LED sky screens, in terms of facility, contents and strategy, respectively. For this research, 4 large-scaled LED sky screens located in both domestic and foreign countries such as Suzhou Sky Screen in Suzhou city of China, Fremont Street Experience VIVA VISION in Las Vegas of the States, the Palace Sky Screen in Beijing of China, and Yeosu Expo Digital Gallery Sky Screen in Yeosu city of Korea, respectively, have intensively been dealt with for research, in terms of the features of their facility aspects.

Chloride penetration in anchorage concrete of suspension bridge during construction stage

  • Yang, In-Hwan;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Steel corrosion in embedded steel causes a significant durability problems and this usually propagates to structural degradation. Large-scaled concrete structures, PSC (Pre-stressed Concrete) or RC (Reinforced Concrete) structures, are usually constructed with mass concrete and require quite a long construction period. When they are located near to sea shore, chloride ion penetrates into concrete through direct or indirect exposure to marine environment, and this leads durability problems. Even if the structures are sheltered from chloride ingress outside after construction, the chloride contents which have been penetrated into concrete during the long construction period are differently evaluated from the initially mixed chloride content. In the study, chloride profiles in cores extracted from anchorage concrete block in two large-scaled suspension bridge (K and P structure) are evaluated considering the exposure periods and conditions. Total 21 cores in tendon room and chamber room were obtained, and the acid-soluble chlorides and compressive strength were evaluated for the structures containing construction period around 3 years. The test results like diffusion coefficient and surface chloride content from the construction joint and cracked area were also discussed with the considerations for maintenance.

Assessment of sensitivity-based FE model updating technique for damage detection in large space structures

  • Razavi, Mojtaba;Hadidi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.261-281
    • /
    • 2020
  • Civil structures may experience progressive deterioration and damage under environmental and operational conditions over their service life. Finite element (FE) model updating method is one of the most important approaches for damage identification in structures due to its capabilities in structural health monitoring. Although various damage detection approaches have been investigated on structures, there are limited studies on large-sized space structures. Thus, this paper aims to investigate the applicability and efficiency of sensitivity-based FE model updating framework for damage identification in large space structures from a distinct point of view. This framework facilitates modeling and model updating in large and geometric complicated space structures. Considering sensitivity-based FE model updating and vibration measurements, the discrepancy between acceleration response data in real damaged structure and hypothetical damaged structure have been minimized through adjusting the updating parameters. The feasibility and efficiency of the above-mentioned approach for damage identification has finally been demonstrated with two numerical examples: a flat double layer grid and a double layer diamatic dome. According to the results, this method can detect, localize, and quantify damages in large-scaled space structures very accurately which is robust to noisy data. Also, requiring a remarkably small number of iterations to converge, typically less than four, demonstrates the computational efficiency of this method.

Dymamic Behavior of Large Concrete Panel Structures Subjected Seismic Loads (지진하중을 받는 대형 콘크리트 판구조의 동적거동-3층 입체구조의 진동실험결과를 중심으로)

  • 서수연;박병순;백용준;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.148-153
    • /
    • 1993
  • The paper presents the results of shaking table test conducted on the 1/3.3 scaled large concrete panel model. The behaviors of large concrete panel structures subjected to seismic excitations are controlled by capacity of horizontal and vertical joints. To Study the seismic capacity of the large concrete panel structures, experimental researches for joints and structural assemblage are needed. Especially, since the magnitude of seismic loads are depended on the variation of time, period and accelerations, dynamic test is needed for estimating the seismic resistance of large concrete panel structures. The objective of this paper is to study the behaviors of large concrete panel structures on seismic excitations and to estimate the safety. Test results are as follows : 1) Test model was critically damaged in the first floor horizontal joint by rocking. 2) Elastic limit(0.12kg) of test model was 5times higher than that of korean seismic design code. 3) Maxium base shear of test model at the ground acceleration of 0.12g was 3.5 times higher than the result of equivalent static analysis. 4) Damping ratio of test model turned out 3.9~5.3% and the period at 0.12g was 0.065sec.

  • PDF