• Title/Summary/Keyword: large-scale test

Search Result 1,432, Processing Time 0.03 seconds

A Study on the Quench Initiation and Propagation Characteristics in GdBCO Racetrack Pancake Coil for Large-Scale Rotating Machines (대형회전기기응용을 위한 GdBCO 레이스트랙형 팬케이크 코일의 ��치 발생과 전파특성에 관한 연구)

  • Yang, D.G.;Song, J.B.;Kim, K.L.;Kwon, O.J.;Lee, W.S.;Ko, T.K.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 2011
  • The stability issue of high temperature superconducting (HTS) racetrack coils is one of the most important factors for the development of large-scale rotating machines, such as ship propulsion motors and power generators. However, The stability and normal zone propagation characteristics of HTS racetrack pancake (RP) coils are not sufficient yet. In this study, quench tests for a GdBCO racetrack pancake coil were carried out under the condition of $LN_2$ at 77 K. Minimum quench energy and two-dimensional normal zone propagation velocities of the coil are also discussed. Normal zone propagation velocity in the coil's curved section is faster than in its straight section due to stress effects. The test results show that the protection of the straight section is of greater importance than that of the curved section when GdBCO racetrack pancake coils are applied to large-scale rotating machines.

Evaluation of Compressibility of Rock Fill Materials by Large-Scale Oedometer Tests (대형 오이도미터 시험을 통한 Rockfill 재료의 압축성 평가)

  • Kim, Bum-Joo;Shin, Dong-Hoon;Jeon, Je-Sung;Lim, Jeong-Yeul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.627-632
    • /
    • 2005
  • In this study, a series of large-scale oedometer tests was performed to investigate the compressibility of rock fill materials. The testing samples were prepared to have three different grain size distributions and for each distribution, exist in two different states(dried and saturated). The test results indicated that particle breakages occurred mainly for the particles larger than 4.75mm in size and increased with increasing grain sizes. Also, it was found that, for a dry sample as it became well-graged, its compressibility decreased and accordingly, its tangent constrained modulus increased. A comparion between the samples in dry and saturated states revealed that compressibility of the materials increases with increasing water content. The values of tangent constrained modulus calculated for the tested dry samples were larger by about 10 to 20%, on average, than those for the saturated samples.

  • PDF

Parallel Computing of Large Scale FE Model based on Explicit Lagrangian FEM (외연 Lagrangian 유한요소법 기반의 대규모 유한요소 모델 병렬처리)

  • 백승훈;김승조;이민형
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.33-40
    • /
    • 2006
  • A parallel computing strategy for finite element(FE) processing is described and implemented in nonlinear explicit FE code and its parallel performances are evaluated. A self-made linux-cluster supercomputer with 520 CPUs is used as a bench mark test bed. It is observed that speed-up is increased almost idealy even up to 256 CPUs for a large scale model. A communication over head and its effect on the parallel performance is also examined. Parallel performance is compare with the commercial code and developed code shows superior performance as the number of CPUs used are increased.

Risk Assesment for Large-scale Slopes Using Multiple Regression Analysis (다중회귀분석을 이용한 대규모 비탈면의 위험도 평가)

  • Lee, Jong-Gun;Chang, Buhm-Soo;Kim, Yong-Soo;Suk, Jae-Wook;Moon, Joon-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.99-106
    • /
    • 2013
  • In this study, the correlation of evaluation items and safety rating for 104 of large-scale slopes along the general national road was analyzed. And, we proposed the regression model to predict the safety rating using the multiple regressions analysis. As the result, it is shown that the evaluation items of slope angle, rainfall and groundwater have a low correlation with safety rating. Also, the regression model suggested by multiple regression analysis shows high predictive value, and it would be possible to apply if the evaluation items of excavation condition and groundwater (rainfall) are not clear.

The Characteristics of the Composite Ground with Sand Compaction Pile(SCP) using Large Soil Box (대형토조시험을 이용한 모래다짐말뚝이 적용된 복합지반의 침하 및 하중전이특성)

  • Kim, Oo-Seok;Park, Eon-Sang;Kim, Jae-Kwon;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.974-981
    • /
    • 2005
  • Because general laboratory tests for sand compaction pile method including unit-cell test device have fixed outside diameter, as area replacement ratio increase, diameter of sand pile increase. These condition can bring about overestimation of stiffness of composite ground. In addition, existing large soil box which consist of bellows type loading plate can occur serious mistake in checking the amount of drained water because there are additional drainage along the inside wall in device. Overcoming these shortcoming, this paper developed modified large scale soil box consist of piston type load plate. In this study, using this device, series of modified large scale soil box tests were performed, and investigated the settlement and stress transportation characteristics with area replacement ratio in sand compaction pile method.

  • PDF

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

3-Dimensional Precision Measurement of Spacecraft Structure Test Model (위성체 구조시험 모델의 3차원 정밀 측정)

  • 윤용식;이중엽;조창래;이상설
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.131-134
    • /
    • 2001
  • The three-dimensional precision measurement technology for industry product of middle and/or large scale has been developed. Theodolite measurement system which is one of the technology is widely used in aerospace industry. This paper describes measurement method and results for spacecraft structure test model by using the measurement system. And structural stability for STM is desribed through the comparison between design values and measured values.

  • PDF

A Comparative Study on Spatial Characteristics of Parcel by Type of Building Construction (건축행위 유형별 필지의 공간적 특성 비교연구)

  • Kim, Kijung;Kim, Dongjun;Lee, Seungil
    • Journal of Korea Planning Association
    • /
    • v.54 no.6
    • /
    • pp.27-42
    • /
    • 2019
  • The purpose of this study is to identify the spatial characteristics of the parcels in which building construction occurred. In recent, urban development patterns in Korea have been shifting from the past. Small-scale development at parcel level is becoming more important in accordance with individual location needs in the low-growth era unlike public lead large-scale urban development in the rapid growth period. Therefore, it is necessary to study the spatial characteristics of the parcels where small-scale development takes place for future urban development management. This study used the chi square independence test, t-test and ANOVA (analysis of variance) to identify the spatial characteristics. The results of the study show that there is a spatial characteristics difference not only between building construction and non-building construction parcels, but also by type of building construction. The parcel where the building construction occurred have a higher proportion in detached house, major commercial districts, district unit planning areas, and commercial areas. In addition, it is caused by parcels, which are large scale and economically valuable, and are influenced by traffic factors such as urban centers and subway accessibility. As a result of each type of building construction, the parcels where the building use change occurred have spatial characteristic difference compared to other building construction, while the spatial characteristics are similar between the new construction/extension and new construction/extension with change of use. Based on this results, it will be possible to identify areas with high demand for small-scale development in the future and to utilize them for planning management of urban development. Furthermore, it will be possible to manage development demand by type of building construction, and to prepare differentiated plans considering the appropriateness of development plan, availability of infrastructure, and harmony with surrounding environment.

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF