• Title/Summary/Keyword: large- amplitude

Search Result 784, Processing Time 0.029 seconds

Efficient Structure-Oriented Filter-Edge Preserving (SOF-EP) Method using the Corner Response (모서리 반응을 이용한 효과적인 Structure-Oriented Filter-Edge Preserving (SOF-EP) 기법)

  • Kim, Bona;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.176-184
    • /
    • 2017
  • To interpret the seismic image precisely, random noises should be suppressed and the continuity of the image should be enhanced by using the appropriate smoothing techniques. Structure-Oriented Filter-Edge Preserving (SOF-EP) technique is one of the methods, that have been actively researched and used until now, to efficiently smooth seismic data while preserving the continuity of signal. This technique is based on the principle that diffusion occurs from large amplitude to small one. In a continuous structure such as a horizontal layer, diffusion or smoothing is operated along the layer, thereby increasing the continuity of layers and eliminating random noise. In addition, diffusion or smoothing across boundaries at discontinuous structures such as faults can be avoided by employing the continuity decision factor. Accordingly, the precision of the smoothing technique can be improved. However, in the case of the structure-oriented semblance technique, which has been used to calculate the continuity factor, it takes lots of time depending on the size of the filter and data. In this study, we first implemented the SOF-EP method and confirmed its effectiveness by applying it step by step to the field data. Next, we proposed and applied the corner response method which can efficiently calculate the continuity decision factor instead of structure-oriented semblance. As a result, we could confirm that the computation time can be reduced by about 6,000 times or more by applying the corner response method.

Flow Visualization of Acoustic Streaming Induced by Ultrasonic Vibration Using Particle Imaging Velocimetry (PIV를 이용한 초음파 진동에 의해 유도된 음향유동의 가시화)

  • 노병국;권기정;이장연;이동렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.528-535
    • /
    • 2004
  • Ultrasonic Vibrator is designed to achieve the maximum vibration amplitude at 30 kHz by in-cluding a horn (diameter, 40 mm), mechanical vibration amplifier at the top of the ultrasonic vibrator in the system and making the complete system resonate. In addition, it is experimentally visualized by particle imaging velocimetry (PIV) that the acoustic streaming velocity in the gap is at maximum when the gap between the ultrasonic vibrator and stationary plate agrees with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave and the theoretical analysis of that is also accomplished and verified by experiment. It is observed that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary plate possibly changes due to the measurement of the average velocity fields of the acoustic streaming induced by the ultrasonic vibration at resonance and non-resonance. There exists extremely small average velocity at non-resonant gaps while the relatively large average velocity exists at resonant gaps compared with non-resonant gaps. It also reveals that there should be larger axial turbulent intensity at the hub region of the vibrator and at the edge of it in the resonant gap where the air streaming velocity is maximized and the flow phenomena is conspicuous than that at the other region. Because the variation of the acoustic streaming velocity at resonant gap is more distinctive than that at non-resonant gap, shear stress increases more in the resonant gap and is also maximized at the center region of the vibrator except the local position of center (r〓0). At the non-resonant gap there should be low values of vorticity distribution, but in contrast to the non-resonant gap, high and negative values of it exist at the center region of the vibrator with respect to the radial direction and in the vicinity of the middle region with respect to the axial direction. Acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover, the proposed method by acoustic streaming can be utilized to the nano and micro-electro mechanical systems as a driving mechanism in addition to the augmentation of the streaming velocity.

Finite Element Simulation of Laser-Generated Ultrasound and Interaction with Surface Breaking Cracks (유한요소법을 이용한 레이저 유도 초음파와 표면 균열과의 상호작용 모델링)

  • Jeong, Hyun-Jo;Park, Moon-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • A finite element method is used to simulate interaction of laser-based ultrasounds with surface breaking tracks in elastic media. The laser line source focused on the surface of semi-infinite medium is modeled as a shear dipole in 2-D plane strain finite elements. The shear dipole-finite clement model is found to give correct directivity patterns for generated longitudinal and shear waves. The interaction of surface waves with surface breaking cracks (2-D machined slot) is considered in two ways. Both the source and receiver are fixed with respect to the cracks in the first case, while the source is moving in another case. It is shown that the crack depth tested in the range of 0.3-5.0mm $({\lambda}_R/d=0.21{\sim}3.45)$ can be measured using the corner reflected waves produced by the fixed laser source. The moving laser source is found to cause a large amplitude change of reflected waves near crack, and the crack whose depth is one order lower than the wavelength ran be detected from this change.

A Study on Polynomial Pre-Distortion Technique Using PAPR Reduction Method in the Next Generation Mobile Communication System (차세대 이동통신 시스템에 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Kim, Wan-Tae;Park, Ki-Sik;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • Recently, the NG(Next Generation) system is studied for supporting convergence of various services and multi mode of single terminal. And a demand of user for taking the various services is getting increased, for supporting these services, many systems being able to transmit a large message have been appeared. In the NG system, it has to be supporting the CDMA and WCDMA besides the tele communication systems using OFDM method with single terminal An intergrated system can be improved with adopting of SoC technique. For adopting SoC technique on the intergrated terminal, we have to solve the non linear problem of HPA(High Power Amplifier). Nonlinear characteristic of HPA distorts both amplitude and phase of transmit signal, this distortion cause deep adjacent channel interference. We adopt a polynomial pre-distortion technique for this problem. In this paper, a noble modem design for NG mobile communication service and a method using polynomial pre-distorter with PAPR technique for counterbalancing nonlinear characteristic of the HPA are proposed.

Shaking Table Test of a 1/10 Scale Isolated Fifteen-story Flat Plate Apartment Building (면진층을 가지는 1/10 축소된 15층 무량판 아파트건물의 진동대 실험)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.287-297
    • /
    • 2011
  • This paper presents the results of performance verification tests of the isolated flat plate apartment building with the laminated rubber bearings. The shaking table test is carried out in CABR(China Academy of Building Research) with two 1/10 scale isolation and non-isolation models under 4 excitation waves. The shaking table test is proceeding from x axis, y axis and x+y axis with different amplitude of acceleration values. The results show that, to non-isolated model, the natural vibration period is remarkably decreased and entered non-linear condition after moderate earthquake. Its accelerations become lager with increasing storey number and completely collapsed under large earthquake. The inter-storey shifts largely exceed the limit values of regulated displacement angles. But to isolated model, the natural vibration period of isolated modal is almost the same in all conditions and still in its elastic condition. The earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. The inter-storey drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. The displacements of isolation layer are in the allowable range. This experiment demonstrates that the seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease the floor acceleration. facilities from their good states that is superior to non-isolated structure.

The Estimation of Climax Index for Broadleaved Tree Species by Analysis of Ecomorphological Properties (생태형태학적(生態形態學的) 특성(特性) 분석(分析)에 의한 활엽수종(闊葉樹種)의 극성상지수(極盛相指數) 추정(推定))

  • Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.2
    • /
    • pp.176-187
    • /
    • 1993
  • Based on the analysis of ecomorphological characters for 84 tree and shrub species, climax indices were estimated so as to interpret the position of the successional sere for the species in the natural deciduous forest. Nineteen ecomorphological characters, considered to be associated with successional gradient in the forest, were selected for the study. One of 2 to 4 steps per character for each species was given on a standardized scale of increasing climaxness, and the index was computed by percent of the sum of the scoring values for total score. Calculated mean value of 54.2 for all indices. Carpinus laxiflora had the highest index value of 83.3, and Populus davidiana recorded the lowest of 18.8. The most climax group, greater than 70 of the index, contained only 9 species, intermediate group, between 40 to 70 of the index, had 58 species, and the most pioneer group, less than 40 of the index comprised 17 species. The result has noticed that the large number of species would take advantage of most diverse resource and niche in the intermediate stage of the sere in the forest. The three components, i.e., light absorption, reproduction, and wood quality were used as axes for a 3-dimensional projection of the relative position for 44 species by principal component analysis. Along the similar ecomorphological characters, four recognized species group were classified by cluster analysis. The distribution pattern of plant families on the index gradient showed that the Betulaceae and Aceraceae had the widest seral amplitude, and the Salicaceae was a family typified as pioneer. There were no families specializing entirely with climax niche.

  • PDF

Mechanical Properties of a High-temperature Superconductor Bearing Rotor in a 10 kWh Class Superconductor Flywheel Energy Storage System (10 kWh급 초전도 베어링 회전자의 기계적 특성 평가)

  • Park, B.J.;Jung, S.Y.;Kim, C.H.;Han, S.C.;Park, B.C.;Han, S.J.;Doo, S.G.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Recently, superconductor flywheel energy storage systems (SFESs) have been developed for application to a regenerative power of train, a power quality improvement, the storage of distributed power sources such as solar and wind power, and a load leveling. As the high temperature superconductor (HTS) bearings offer dynamic stability without the use of active control, accurate analysis of the HTS bearing is very important for application to SFESs. Mechanical property of a HTS bearing is the main index for evaluating the capacity of an HTS bearing and is determined by the interaction between the HTS bulks and the permanent magnet (PM) rotor. HTS bearing rotor consists of PM and iron collector and the proper dimension design of them is very important to determine a supporting characteristics. In this study, we have optimized a rotor magnet array, which depends on the limited bulk size and performed various dimension layouts for thickness of the pole pitch and iron collector. HTS bearing rotor was installed into a single axis universal test machine for a stiffness test. A hydraulic pump was used to control the amplitude and frequency of the rotor vibration. As a result, the stiffness result showed a large difference more than 30 % according to the thickness of permanent magnet and iron collector. This is closely related to the bulk stiffness controlled by flux pining area, which is limited by the total bulk dimension. Finally, the optimized HTS bearing rotor was installed into a flywheel system for a dynamic stability test. We discussed the dynamic properties of the superconductor bearing rotor and these results can be used for the optimal design of HTS bearings of the 10kWh SFESs.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

Aerodynamic Force Measurements and PIV Study for the Twisting Angle of a Swift Wing Model (칼새 날개의 비틀림 각에 대한 공력측정 및 PIV 연구)

  • Bok, Jung Jin;Chang, Jo Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.765-772
    • /
    • 2015
  • Aerodynamic force measurements and phase-locked PIV study were carried out to check the bio-mimetic MAV applicability of a swift flight. Two-rotational DOF robotic wing model and blowing-type wind tunnel were employed. The amplitude of twist angle were ${\pm}0$, ${\pm}5$, ${\pm}10$, and ${\pm}20$ deg. and stroke angles were manipulated by simple harmonic function with out-of-phase in regards to the stroke motion. It is acknowledged that the time-varying lift coefficients in accordance with the change of the twist angle did not result in any noticeable differences, just the small decrease and delay. However, the drag exhibited that the small change of the twist angle can produce large thrust. These findings imply why a swift uses small twist angle during flight. The PIV results displayed that the delay of aerodynamic forces is highly associated with the vortical structures around the wing. It is therefore indicated that a process of designing a swift-based Micro Air Vehicle should take the twist angle into consideration, as the essential parameter.

A Numerical Simulation of Three- Dimensional Nonlinear Free surface Flows (3차원 비선형 자유표면 유동의 수치해석)

  • Chang-Gu Kang;In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.38-52
    • /
    • 1991
  • In this paper, a semi-Lagrangian method is used to solve the nonlinear hydrodynamics of a three-dimensional body beneath the free surface in the time domain. The boundary value problem is solved by using the boundary integral method. The geometries of the body and the free surface are represented by the curved panels. The surfaces are discretized into the small surface elements using a bi-cubic B-spline algorithm. The boundary values of $\phi$ and $\frac{\partial{\phi}}{\partial{n}}$ are assumed to be bilinear on the subdivided surface. The singular part proportional to $\frac{1}{R}$ are subtracted off and are integrated analytically in the calculation of the induced potential by singularities. The far field flow away from the body is represented by a dipole at the origin of the coordinate system. The Runge-Kutta 4-th order algorithm is employed in the time stepping scheme. The three-dimensional form of the integral equation and the boundary conditions for the time derivative of the potential Is derived. By using these formulas, the free surface shape and the equations of motion are calculated simultaneously. The free surface shape and fille forces acting on a body oscillating sinusoidally with large amplitude are calculated and compared with published results. Nonlinear effects on a body near the free surface are investigated.

  • PDF