• 제목/요약/키워드: large shear deformation

검색결과 303건 처리시간 0.011초

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

전단변형에 따른 쏘일네일의 전이길이 (Transfer Length of the Soil Nail Induced by the Shear Deformation)

  • 유민구;이상덕
    • 한국지반공학회논문집
    • /
    • 제34권6호
    • /
    • pp.61-73
    • /
    • 2018
  • 쏘일네일 보강지반에 전단변형이 발생하면 쏘일네일 주변지반에는 수동토압이 유발되고, 전단변형의 증가는 주변지반의 토압 변화와 쏘일네일의 변형 및 부재력 변화를 야기한다. 본 연구에서는 대형 직접전단시험기를 이용하여 쏘일네일의 수직방향으로 전단변형을 유발하면서 쏘일네일의 전단거동을 실험적으로 분석하였으며, 수치해석을 통해 검증하였다. 전단면에서 이격된 쏘일네일의 정착부 길이(6D, 8D, 10D, 12D) 변화를 변수로 전단시험을 실시하였다. 연구결과, 전단변형의 지속적인 증가는 그라우트의 손상을 유발함을 확인하였으며, 정착부 길이변화에 따른 영향을 확인하였다. 모형시험과 수치해석을 통해 분석된 쏘일네일의 전이길이는 0.2~0.22m로 기존 연구에서 제시한 0.1m보다 크게 증가하였으며, 전단영역은 전단면에서 0.6m까지의 범위로 확인되었다.

Constitutive Equations for Dilute Bubble Suspensions and Rheological Behavior in Simple Shear and Uniaxial Elongational Flow Fields

  • Seo Dongjin;Youn Jae Ryoun
    • Fibers and Polymers
    • /
    • 제6권2호
    • /
    • pp.131-138
    • /
    • 2005
  • A theoretical model is proposed in order to investigate rheological behavior of bubble suspension with large deformation. Theoretical constitutive equations for dilute bubble suspensions are derived by applying a deformation theory of ellipsoidal droplet [1] to a phenomenological suspension theory [2]. The rate of deformation tensor within the bubble and the time evolution of interface tensor are predicted by applying the proposed constitutive equations, which have two free fitting parameters. The transient and steady rheological properties of dilute bubble suspensions are studied for several capillary numbers (Ca) under simple shear flow and uniaxial elongational flow fields. The retraction force of the bubble caused by the interfacial tension increases as bubbles undergo deformation. The transient and steady relative viscosity decreases as Ca increases. The normal stress difference (NSD) under the simple shear has the largest value when Ca is around 1 and the ratio Of the first NSD to the second NSD has the value of 3/4 for large Ca but 2 for small Ca. In the uniaxial elongational flow, the elongational viscosity is three times as large as the shear viscosity like the Newtonian fluid.

AN EFFECT OF LARGE DEFORMATIONS ON WAVES IN ELASTIC CYLINDRICAL LAYER

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • 제5권3호
    • /
    • pp.811-818
    • /
    • 1998
  • A cylindrical elastic layer in finite deformation s con-sidered. The characteristics of the linear longitudinal wave and the nonlinear shear wave are investigated; the dependence of the later on the parameter of large deformation is given.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

전단변형을 고려한 이방성 적층셜의 이론해석 (Theoretical Analysis of Anisotropic Laminated Shells with Shear Deformation)

  • 권익노;권택진
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.85-92
    • /
    • 2001
  • The structural behaviors of anisotropic laminated shells are quite different from that of isotropic shells, Also, the classical theory of shells based on neglecting transverse shear deformation is invalid for laminated shells. Thus, to obtain the more exact behavior of laminated shells, effects of shear deformation should be considered in the analysis. As the length of x-axis or y-axis is increase, the effects of transverse shear deformation are decrease because the stiffness for the axis according to the increasing of length is large gradually. In this paper, the governing equations for anisotropic laminated shallow shell including the effects of shear deformation are derived. And then, by using Navier's solutions for shallow shells having simple supported boundary, extensive numerical studies for anisotropic laminated shallow shells were made to investigate the effects of shear deformation for 3 typical shells. Also, static analysis is carried out for cross-ply laminated shells considering the effects of various geometrical parameters, e,g., the shallowness ratio, the thickness ratio and the ratio of a(length of x-axis)-to-b(length of y-axis). The results are compared with existed one and show good agreement.

  • PDF

고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석 (Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

대형반복삼축시험과 전단응력비 개념을 이용한 쇄석 보조기층의 영구변형 특성평가 (Evaluation of Permanent Deformation Characteristics in Crushed Subbase Materials Using Shear Stress Ratio and Large Repeated Triaxial Compression Test)

  • 임유진;김인태;곽기헌
    • 한국도로학회논문집
    • /
    • 제13권4호
    • /
    • pp.41-50
    • /
    • 2011
  • 일반적으로 도로 포장체의 파손은 다양한 요소에 영향을 받는 것으로 알려져 있다. 그 중 가장 주된 포장체 파손형태로서 영구변형(permanent deformation)과 피로균열(fatigue crack)을 들 수 있으며 이들은 포장체의 공용수명을 단축시키는 주요원인이 된다. 도로 포장체의 영구변형을 정확히 예측하는 것은 도로포장체의 내구성을 파악하여 이를 기반으로 포장을 설계하는 포장설계법의 수립에 있어 매우 중요하다. 포장하부구조의 재료거동은 본질적으로 전단강도(${\tau}_{max}$)와 밀접한 연관성을 가지므로 포장하부구조 내 발생한 전단응력${\tau}$의 전단강도에 대한 발생비를 고려하여 영구변형 모델을 설정할 필요가 대두되고 있다. 이에 본 연구에서는 이와 같은 전단응력비 개념을 도입한 대형반복삼축압축시험을 통하여 도로하부 재료 중 국내에서 사용되는 대표적인 입상의 보조기층 재료에 대한 영구변형 특성을 알아보았으며 이를 기초로 영구변형 모델의 수립에 필요한 모델 매개변수를 시험을 통해 새롭게 제안하고자 하였다.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.