• 제목/요약/키워드: large scaled load test

검색결과 27건 처리시간 0.023초

쏘일네일링 벽체에 대한 대형파괴재하시험 사례 (A Case Study on the Large Scaled Load Test of Soil Nailed Walls)

  • 강인규;류정수;권영호;이승현;박신영
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.135-145
    • /
    • 2006
  • Soil nailing systems are generally many used in underground excavations and reinforcements of slopes since the first construction as a temporary retaining wall in 1993, Korea. In recently, they are many attempts to expand the permanent reinforcements of slopes However, experimental studies related to soil nailing systems are insufficient Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nail walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out

  • PDF

대형파괴재하시험을 통한 쏘일네일 벽체의 거동분석 (Behavior Analysis of Soil Nailed Wall through Large Scaled Load Test)

  • 강인규;권영호;박신영;이승현;김홍택
    • 한국지반환경공학회 논문집
    • /
    • 제9권3호
    • /
    • pp.51-60
    • /
    • 2008
  • 쏘일네일링 공법은 국내에서 지하굴착시 가시설 벽체뿐만 아니라 사면보강에도 많이 사용하고 있는 공법으로 실물크기의 쏘일네일링 벽체에 관한 연구는 주로 현장계측결과 및 현장인발시험결과에 국한된 연구가 대부분이다. 특히 쏘일네일링 보강벽체에 대한 대형파괴재하시험과 관련된 학술적 연구 성과는 거의 없는 상태이다. 이 연구에서 쏘일네일링 보강벽체에 대한 대형파괴재하시험 사례를 소개하고 이를 통해 규명된 쏘일네일링 보강벽체의 거동특성과 유지관리차원에서 활용 가능한 벽체의 사용한계에 해당하는 허용변위 및 벽체의 파괴상태에 해당하는 극한변위를 제시하였다. 또한 하중비와 발생 변위비의 관계로 부터 쏘일네일링 보강벽체의 사용성에 이상이 없는 최소한의 소요안전율에 대한 제시가 이루어졌다.

  • PDF

대구경 해상 강관말뚝의 설계지지력 확인을 위한 여러 가지 재하시험의 적용 (Case Studies of Several Load Tests for Large Diameter Battered Steel Pipe Piles Constructed on the Offshore Area.)

  • 이정학;서덕동;정헌주
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.291-298
    • /
    • 2001
  • It is very difficult to accomplish load tests of piles with large diameter constructed on the offshore area, because of requirement for large scaled loading equipment and bad testing conditions. Therefore, so far in many cases pile driving dynamic formulas have applied to quality control, and recently dynamic load test method is widely used for confirming bearing capacities of such piles. However, in cases of piles with very large diameter about 2,500mm, it is nearly impossible for regular type load test methods of piles such as static and dynamic to apply owing to very large design load. This is case studies of load tests such as modified static and dynamic load tests of piles and point load tests of rock samples for estimating rational allowable bearing capacity of very large diameter piles constructed on the marine area.

  • PDF

대형 UTM을 이용한 강관합성 말뚝재료의 강도 특성 평가 (Evaluation on compressive strength of steel-concrete composite piles using a large scaled UTM(Universal Test Machine))

  • 이주형;권형민;박재현;곽기석;정문경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.482-489
    • /
    • 2009
  • Various model piles with different sections such as reinforced concrete, steel, steel-concrete composite without rebar and steel-concrete composite with rebar were made, and vertical load test was conducted using a large scaled UTM(Universal Test Machine) to evaluate Young's modulus and ultimate load of the model piles. Based on the tests, ultimate load of steel-concrete composite pile is 31% greater than the sum of it of reinforced concrete pile and it of steel pile. This is caused that ultimate load and Young's modulus of inner concrete increase due to confining effect by outer steel casing. Variation of ultimate load is also insignificant depending on the ratio of length to diameter(L/D), therefore bucking has not an effect on change of ultimate load in case of the L/D below 10.

  • PDF

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

축소형 5KVA 동기발전기 AVR/PSS 강건한 제어정수 설계 및 튜닝 (Design and Tuning of Micro 5KVA Machine's AVR/PSS Robust Control Parameters)

  • 김동준;문영환;김태균;신정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.165-168
    • /
    • 2000
  • This paper describes the guideline of design and tuning of practical Micro 5KVA machine's digital AVR/PSS control parameters by using the computer models and testing on-line AVR step test of laboratory simulator under the no-load or load conditions. The suggested procedures can be also applied to the large scaled machine's AVR/PSS control parameter tuning in KEPCO system.

  • PDF

대형파괴재하시험을 통한 조립식 쏘일네일 벽체의 거동분석 (Behavior Analysis of Assembling Soil Nailed Walls through Large Scaled Load Test)

  • 강인규;권영호;박신영;기민주;김홍택
    • 한국지반환경공학회 논문집
    • /
    • 제9권4호
    • /
    • pp.23-36
    • /
    • 2008
  • 쏘일네일링 공법은 수동보강재를 이용하여 원지반의 전단강도를 증가시켜 지반을 보강하는 공법이다. 쏘일네일링 공법에서 전면벽체는 현장타설 콘크리트 격자블록과 현장타설 콘크리트 벽체의 2가지 형태가 있으며, 1:0.7 보다 완만한 사면일 경우에는 현장타설 콘크리트 격자블록이 사용되고 있다. 또한 1:0.5 보다 급한 사면인 경우에는 숏크리트에 두께 30cm 정도의 현장타설 콘크리트 벽체를 합벽으로 시공하는 형태의 전면벽체가 활용되고 있다. 이 연구는 새로운 쏘일네일링 공법으로 조립식 쏘일네일링 공법을 제안하였다. 조립식 쏘일네일링 공법은 두께 20cm의 공장 제작된 콘크리트 패널을 사용하여 조립식으로 시공하는 공법으로 기존의 쏘일네일링 공법에 비해 전면벽체의 품질과 시공성을 향상시킬 수 있으며, 사면 절취 후 바로 콘크리트 패널을 절취면에 부착하여 전체 사면의 안정성을 증대시키는 효과가 있다. 본 연구에서는 실물규모의 사면단면에 파괴재하시험을 실시하여 조립식 쏘일네일링 공법에서 사용하고 있는 콘크리트 패널에 의한 전면벽체의 강성에 의한 구속효과에 의한 영향을 규명하고자 하였다. 대형파괴재하시험결과 숏크리트 전면벽체로 시공된 일반 쏘일네일링 공법에 비해 콘크리트 패널의 강성 전면벽체를 사용한 조립식 쏘일네일링 공법의 경우 하중-침하 관계가 우수한 것으로 나타났다.

  • PDF

이산요소법을 이용한 수치해석에서의 상사성 이론의 적용성 검토 (Feasibility Study on Similarity Principle in Discrete Element Analysis)

  • 윤태영;박희문
    • 한국도로학회논문집
    • /
    • 제18권2호
    • /
    • pp.51-60
    • /
    • 2016
  • PURPOSES : The applicability of the mechanics-based similarity concept (suggested by Feng et al.) for determining scaled variables, including length and load, via laboratory-scale tests and discrete element analysis, was evaluated. METHODS: Several studies on the similarity concept were reviewed. The exact scaling approach, a similarity concept described by Feng, was applied in order to determine an analytical solution of a free-falling ball. This solution can be considered one of the simplest conditions for discrete element analysis. RESULTS : The results revealed that 1) the exact scaling approach can be used to determine the scale of variables in laboratory tests and numerical analysis, 2) applying only a scale factor, via the exact scaling approach, is inadequate for the error-free replacement of small particles by large ones during discrete element analysis, 3) the level of continuity of flowable materials such as SCC and cement mortar seems to be an important criterion for evaluating the applicability of the similarity concept, and 4) additional conditions, such as the kinetics of particle, contact model, and geometry, must be taken into consideration to achieve the maximum radius of replacement particles during discrete element analysis. CONCLUSIONS : The concept of similarity is a convenient tool to evaluate the correspondence of scaled laboratory test or numerical analysis to physical condition. However, to achieve excellent correspondence, additional factors, such as the kinetics of particles, contact model, and geometry, must be taken into consideration.

선박접안시험을 통한 자켓식 돌핀부두의 내하력 평가 방법 연구 (Assessment of Safety and Load Carrying Capacity of Aged Jacket-Typed Dolphin by Ship-Impact Test)

  • 조병완;권오혁
    • 한국해양공학회지
    • /
    • 제12권3호통권29호
    • /
    • pp.9-18
    • /
    • 1998
  • An improved evaluation method of load-carrying capacity for the large-scaled offshore structures, which subjected to the axial force and bending moments simultaneously at the piles, was suggested with reliability analysis and advanced working stress method. Reliability analysis requires the fracture probability and safety factor(${beta}$) for each of forces and the load-carrying capacity due to combined action of axial force and bending moments from $P_n - {beta}$ Curve. The combined equation due to those forces, which suggested by the Korean Specification for the marine structure, was derived for the advanced working stress method and applied to evaluate the load-carrying capacity of jacket-type dolphin piers.

  • PDF

암반 정착 대구경 피어기초의 거동특성에 관한 연구 (The Behavior of Large Diameter Rock Socketed Piles)

  • 김태현;김찬국;황의석;이봉열;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1245-1250
    • /
    • 2006
  • The rapid growth of the economy recently gas led to increasing social needs for large scaled structures, such as high-rise buildings and long span bridges. In building these large-scaled structures the trend has been to construct foundations beating on or in rock masses in order to ensure stability and serviceability of the structure under several significant loads. However. when designing the drilled shaft foundation socketed in rock masses in Korea, the bearing capacity for the pier used to be determined by using the empirical expression, which depends on the compressive strength of the rock, or presumable bearing capacity recommended on foreign references or manuals. In this study, numerical analyses are used to trace rock-socketed pile behavior and are made alike with pile load test result in field. The result of this numerical analyses study have shown that following factors have a significant influence on the load capacity and settlement of the pier. Significant influence first factor of the geometry of the socket as defined by the length to diameter ratio. Second factor of the modulus of the rock both around the socket and below the base. third factor of the condition of the end of the pier with respect to the removal of drill cuttings and other loose material from the bottom of the socket.

  • PDF