• Title/Summary/Keyword: large rotations

Search Result 74, Processing Time 0.027 seconds

ANGLE CORRECTION FOR FIVE-AXIS MILLING NEAR SINGULARITIES

  • Munlin, M.;Makhanov, S.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.869-874
    • /
    • 2004
  • The inverse kinematics of five-axis milling machines produce large errors near stationary points of the required surface. When the tool travels cross or around the point the rotation angles may jump considerably leading to unexpected deviations from the prescribed trajectories. We propose three new algorithms to repair the trajectories by adjusting the rotation angles in such a way that the kinematics error is minimized. Given the tool orientations and the inverse kinematics of the machine, we first eliminate the jumping angles exceeding ${\pi}$ by using the angle adjustment algorithm, leaving the jumps less than ${\pi}$ to be further optimized. Next, we propose to apply an angle switching algorithm to compute the rotations and identify an optimized sequence of rotations by the shortest path scheme. Further error reduction is accomplished by the angle insertion algorithm based an o special interpolation to obtain the required rotations near the singularity. We have verified the algorithms by five-axis milling machines, namely, MAHO600E at the CIM Lab of Asian Institute of Technology and HERMLE UWF902H at the CIM Lab of Kasetsart University.

  • PDF

Spatial Post-buckling Analysis of Thin-walled Space Frames based on the Corotational Formulation (대회전을 고려한 공간 박벽 뼈대구조물의 기하 비선형 후좌굴 거동 해석)

  • Lee, Kyoung Chan;Park, Jung Il;Kim, Sung Bo;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.599-610
    • /
    • 2007
  • In this paper, we described a co-rotational formulation for the geometrical nonlinear analysis of three-dimensional frames. We suggested a new concept called the Zero-Twist-Section Condition (ZTSC) to decide the element coordinate system consistently. According to the ZTSC procedure, it is possible to obtain an element coordinate system and natural deformations consistently when finite displacements and rotations are induced in an element. Based on the developed procedure, numerical examples are investigated to calculate natural rotations while finite displacements are imposed on an element. Also, the developed co-rotational procedure gives accurate results in the analysis of post-buckling problems with finite rotations.

A Geometrically Nonlinear Analysis of the Curved Shell Considering Large Displacements and Large Rotation Increments (대변위 및 대회전을 고려한 만곡된 쉘의 기하학적 비선형 해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • This paper presents geometrically nonlinear formulation of shell problems using the three-dimensional curved shell element, which includs large displacements and large rotations. Formulations of the geometrically nonlinear problems can be derived in a variety of ways, but most of them have been obtained by assuming that nodal rotations are small. Hence, the tangent stiffness matrix is derived under the assumptions that rotational increments are infinitesimal and the effect of finite rotational increments have to be considered during the equilibrium iterations. To study the large displacement and large rotation problems, the restrictions are removed and the formulations of the curved shell element including the effect of large rotational increments are developed in this paper. The displacement based finite element method using this improved formulation are applied to the analyses of the geometrically nonlinear behaviors of the single and double curved shells, which are compared with the results by others.

  • PDF

THE ORDERING OF MAGNETIC FIELDS IN THE COSMOS

  • BIERMANN PETER L.;KRONBER PHILIPP P.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.527-531
    • /
    • 2004
  • It is argued that the key task in understanding magnetic fields in the cosmos is to comprehend the origin of their order or coherence over large length scales in galaxies. Obtaining magnetic fields can be done in stars, whose lifetime is usually $10^{10}$ rotations, while galactic disks have approximately 20 to 50 rotations in their lifetime since the last major merger, which established the present day gaseous disk. Disorder in the galactic magnetic fields is injected on the disk time scale of about 30 million years, about a tenth of the rotation period, so after one half rotation already it should become completely disordered. Therefore whatever mechanism Nature is using, it must compete with such a short time scale, to keep order in its house. This is the focal quest.

A Geometrically Nonlinear Analysis for the Eccentric Degenerated Beam Element Considering Large Displacements and Large Rotations (대변위 밀 대회전을 고려한 편심된 격하 보요소의 기하학적 비선형해석)

  • Jae-Wook Lee;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.227-233
    • /
    • 1992
  • To study the large displacement and large rotation problems, geometrically nonlinear formulation of eccentric degenerated beam element has been developed, where the restrictions of infinitesimal rotation increments are removed and the incremental equations are derived using the Taylor series expansion of the displacement function at time t+dt. The geometrically nonlinear analyses are carried out for the cases of cantilever, square frame, shallow arch and 45-degree bend beam and all of them are compared with each of the other results published. The element developed in the present research can be efficiently utilized for analysis of the nonlinear behaviours of structures when displacements and rotations are large.

  • PDF

Simplified Collapse Analysis of Ship Transverse Structures

  • Yang, Park-Dal-Chi
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1993
  • In this paper, a thoery for the static analysis of large plastic deformations of 3-dimentional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam and post-failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS FOR A COMPOSITE PRESSURE VESSEL

  • 도영대;김형근
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.141-153
    • /
    • 1995
  • An incremental Total Lagrangian Formulation is implemented for the finite element analysis of laminated composite pressure vessel with consideration of the material and geometric nonlinearities. For large displacements/large rotations due to geometric nonlinearities, the incremental equations are derived using a quadratic approximation for the increment of the reference vectors in terms of the nodal rotation increments. This approach leads to a complete tangent stiffness matrix. For material nonlinearity, the analysis is performed by using the piecewise linear method, taking account of the nonlinear shear stress-strain relation. The results of numerical tests include the large deflection behavior of the selected composite shell problem. When compared with the previous analysis, tile results are in good agreement with them. As a practical example, filament wound pressure vessel is analyzed with consideration of the geometrically and materially nonlinearity. The numerical results agree fairly well with the existing experimental results.

  • PDF

Real-Time Simulation of Large Rotational Deformation and Manipulation (큰회전 변형 및 조작의 실시간 시뮬레이션)

  • Choi, Min-Gyu;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper proposes a real-time technique for simulating large rotational deformations. Modal analysis based on a linear strain tensor has been shown to be suitable for real-time simulation, but is accurate only for moderately small deformations. In the present work, we identify the rotational component of an infinitesimal deformation, and extend linear modal analysis to track that component. We then develop a procedure to integrate the small rotations occurring al the nodal points. An interesting feature of our formulation is that it can implement both position and orientation constraints in a straightforward manner. These constraints can be used to interactively manipulate the shape of a deformable solid by dragging/twisting a set of nodes, Experiments show that the proposed technique runs in real-time even for a complex model, and that it can simulate large bending and/or twisting deformations with acceptable realism.

  • PDF

Comparison of monotonic and cyclic pushover analyses for the near-collapse point on a mid-rise reinforced concrete framed building

  • GUNES, Necmettin
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.189-196
    • /
    • 2020
  • The near-collapse performance limit is defined as the deformation at the 20% drop of maximum base shear in the decreasing region of the pushover curve for ductile framed buildings. Although monotonic pushover analysis is preferred due to the simple application procedure, this analysis gives rise to overestimated results by neglecting the cumulative damage effects. In the present study, the acceptabilities of monotonic and cyclic pushover analysis results for the near-collapse performance limit state are determined by comparing with Incremental Dynamic Analysis (IDA) results for a 5-story Reinforced Concrete framed building. IDA is performed to obtain the collapse point, and the near-collapse drift ratios for monotonic and cyclic pushover analysis methods are obtained separately. These two alternative drift ratios are compared with the collapse drift ratio. The correlations of the maximum tensile and compression strain at the base columns and beam plastic rotations with interstory drift ratios are acquired using the nonlinear time history analysis results by the simple linear regression analyses. It is seen that these parameters are highly correlated with the interstory drift ratios, and the results reveal that the near-collapse point acquired by monotonic pushover analysis causes unacceptably high tensile and compression strains at the base columns, as well as large plastic rotations at the beams. However, it is shown that the results of cyclic pushover analysis are acceptable for the near-collapse performance limit state.

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.