Browse > Article

Spatial Post-buckling Analysis of Thin-walled Space Frames based on the Corotational Formulation  

Lee, Kyoung Chan (서울대학교 교량설계핵심기술연구단)
Park, Jung Il (서울대학교 건설환경종합연구소)
Kim, Sung Bo (충북대학교 토목공학과)
Chang, Sung Pil (서울대학교 지구환경시스템공학부)
Publication Information
Journal of Korean Society of Steel Construction / v.19, no.6, 2007 , pp. 599-610 More about this Journal
Abstract
In this paper, we described a co-rotational formulation for the geometrical nonlinear analysis of three-dimensional frames. We suggested a new concept called the Zero-Twist-Section Condition (ZTSC) to decide the element coordinate system consistently. According to the ZTSC procedure, it is possible to obtain an element coordinate system and natural deformations consistently when finite displacements and rotations are induced in an element. Based on the developed procedure, numerical examples are investigated to calculate natural rotations while finite displacements are imposed on an element. Also, the developed co-rotational procedure gives accurate results in the analysis of post-buckling problems with finite rotations.
Keywords
large rotation; space frame; post-buckling; geometrical nonlinearity; Corotational formulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Argyris, J. et al. (1979) Finite element method - the natural approach. Computer methods in applied mechanics and engineering, Vol. 17/18, pp. 1-106   DOI
2 Chen, H. H., Lin, W. Y. and Hsiao, K. M. (2006) Co-rotational finite element formulation for thinwalled beams with generic open section. Computer methods in applied mechanics and engineering, Vol. 195, pp. 2334-2370   DOI   ScienceOn
3 Hsiao, K. M. (1992) Corotational total Lagrangian formulation for three-dimensional beam element, AIAA Journal Vol. 30, No. 3, pp. 797-804   DOI
4 Hsiao, K. M., Lin, J. Y. and Lin, W. Y. (1999) A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams, Computer methods in applied mechanics and engineering, Vol. 169, pp. 1-18   DOI
5 Rankin, C. C. and Brogan, F. A. (1984) An element independent corotational procedure for the treatment of large rotations. Collapse analysis of structures, ed. L. H. Sobel & K. Thomas, ASME, New York, pp. 85-100
6 Yang, Y. B. and Kuo, S. R. (1994) Theory of nonlinear framed structures, Prentice Hall, Singapore
7 Argyris, J. (1982) An excursion into large rotations. Computer methods in applied mechanics and engineering, Vol. 32, pp. 85-155   DOI   ScienceOn
8 Crisfield, M. A. (1990) A consistent co-rotational formulation for nonlinear, three-dimensional, beamelements. Computer methods in applied mechanics and engineering, Vol. 81, pp. 131-150   DOI   ScienceOn
9 Kuo, S. R., Yang, Y. B. and Chou, J. H. (1993) Nonlinear analysis of space frames with finite rotations. ASCE Journal of structural engineering, Vol. 119, No. 1, pp. 1-15   DOI
10 Cardona, A. and Geradin, M. (1988) A beam finite element non-linear theory with finite rotations. International Journal of numerical methods and engineering, Vol. 26, pp. 2403-2438   DOI   ScienceOn
11 김문영, 최명수, 장영, 김남일(2002) 박벽보의 응력해석을 위한 단면상수의 자동산정, 한국강구조학회 논문집, 한국강구조 학회, 제14권, 제1호, pp. 41-49
12 Urthaler, Y. and Reddy, J. N. (2005) A corotational finite element formulation for the analysis of planar beams. Communications in numerical methods in engineering, Vol. 21, pp. 553-570   DOI   ScienceOn
13 박효기, 김성보, 김문영, 장승필(1999) 비대칭단면을 갖는 공간 뼈대구조의 횡-비틂 후좌굴 유한요소해석, 한국강구조학회논문집, 한국강구조학회, 제11권, 제2호, pp. 153-165
14 Crisfield, M. A. (1997) Non-linear finite element analysis of solids and structures volume 2: advanced topics, John Wiley & Sons, UK
15 Bathe, K-J. and Bolourchi, S. (1979) Large displacement analysis of three-dimensional beam structures. International Journal of numerical methods and engineering, Vol. 14, pp. 961-986   DOI   ScienceOn
16 Battini, J-M. and Pacoste, C. (2002) Co-rotational beam elements with warping effects in instability problems, Computer methods in applied mechanics and engineering, Vol. 191, pp. 1755-1789   DOI   ScienceOn
17 Li, Z. X. (2007) A mixed co-rotational formulation of 2D beam element using vectorial rotational variables, Communications in numerical methods in engineering, Vol. 23, No. 1, pp. 45-69   DOI   ScienceOn
18 Gruttmann, F., Sauer, R. and Wagner, W. (1998) A geometrical nonlinear eccentric 3D-beam element with arbitrary cross-sections, Computer methods in applied mechanics and engineering, Vol. 160, pp. 383-400   DOI
19 Simo, J. C. and Vu-Quoc, L. (1986) A three-dimensional finite strain rod model. Part II: Computational aspects. Computer methods in applied mechanics and engineering, Vol. 58, pp. 79-116   DOI   ScienceOn
20 Yazdchi, M. and Crisfield, M. A. (2002) Buoyancy forces and the 2D finite element analysis of flexible offshore pipes and risers. International journal for numerical methods in engineering, Vol. 54, pp. 61-88   DOI   ScienceOn
21 Kim, M. Y., Chang, S. P. and Kim, S. B. (2001) Spatial postbuckling analysis of nonsymmetric thin-walled frames. II: geometrically nonlinear FE procedures. ASCE Journal of engineering mechanics, Vol. 127, No. 8, pp. 779-790   DOI   ScienceOn
22 김성보, 김문영, 장승필(2002) 비대칭 단면을 갖는 공간뼈대구 조의 후좌굴해석을 위한 개선이론, 대한토목학회 논문집, 대한토목학회, 제22권, 제2-A호, pp. 189-200