• Title/Summary/Keyword: large pipeline

Search Result 219, Processing Time 0.022 seconds

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

Effect of External Corrosion in Pipeline on Failure Prediction

  • Lee, Ouk-Sub;Kim, Ho-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.48-54
    • /
    • 2000
  • This paper presents the effect of shape of external corrosion in pipeline on failure prediction by using a numerical simulation. The numerical study for the pipeline failure analysis is based on the FEM(Finite Element Method)with an elastic-plstic and large-deformation analysis. Corrosion pits and narrow corrosion grooves in pressurized pipeline were analysed. A failure criterion, based on the local stress state at the corrosion and a plastic collapse failure mechanism, is proposed. The predicted failure stress assessed for the simulated corrosion defects having different corroded shapes along the pipeline axis compared with those by methods specified in ANSI/ASME B31G code and a modified B31G code. It is concluded the corrosion geometry significantly affects the failure behavior of corroded pipeline and categorisation of pipeline corrosion should be considered in the development of new guidance for integrity assessment.

  • PDF

Flow Around a Pipeline and Its Stability in Subsea Trench

  • Lee, Seungbae;Jang, Sung-Wook;Chul H. Jo;Hong, Sung-Guen
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.500-509
    • /
    • 2001
  • Offshore subsea pipelines must be stable against external loadings, which are mostly due to waves and currents. To determine the stability of a subsea pipeline on the seabed, the Morrison equation has been applied with prediction of inertia and drag forces. When the pipeline is placed in a trench, the force acting on it is reduced considerably. Therefore, to consider the stability of a pipeline in a trench, one must employ reduction factors. To investigate the stability of various trenches, we numerically simulated flows over various trenches and compared them with experimental data from PIV (Particle Image Velocimetry) measurements. The present results were produced ar Reynolds numbers ranging from 6$\times$10$^3$to 3$\times$10(sub)5 based on the diameter of the cylinder. Quasi-periodic flow patterns computed by large-eddy simulation were compared with experimental data in terms of mean flow characteristics fro typical trench configurations (W/H=1 and H/D=3, 4). The stability for various trench conditions was addressed in terms of mean amplitudes of oscillating lift and drag, and the reduction factor for each case was suggested for pipeline design.

  • PDF

SYSTEM ANALYSIS OF PIPELINE SOFTWARE - A CASE STUDY OF THE IMAGING SURVEY AT ESO

  • Kim, Young-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.403-416
    • /
    • 2003
  • There are common features, in both imaging surveys and image processing, between astronomical observations and remote sensing. Handling large amounts of data, in an easy and fast way, has become a common issue. Implementing pipeline software can be a solution to the problem, one which allows the processing of various kinds of data automatically. As a case study, the development of pipeline software for the EIS (European Southern Observatory Imaging Survey) is introduced. The EIS team has been conducting a sky survey to provide candidate targets to the 250 VLTs (Very Large Telescopes) observations. The survey data have been processed in a sequence of five major data corrections and reductions, i.e. preprocessing, flat fielding, photometric and astrometric corrections, source extraction, and coaddition. The processed data are eventually distributed to the users. In order to provide automatic processing of the vast volume of observed data, pipeline software has been developed. Because of the complexity of objects and different characteristic of each process, it was necessary to analyze the whole works of the EIS survey program. The overall tasks of the EIS are identified, and the scheme of the EIS pipeline software is defined. The system structure and the processes are presented, and in-depth flow charts are analyzed. During the analyses, it was revealed that handling the data flow and managing the database are important for the data processing. These analyses may also be applied to many other fields which require image processing.

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.

Practical Issues in Application of RFID to Pipeline Construction and its Benefit Analysis

  • Yun, Ki Cheol;Oh, Chi Don;Cho, Nam Ho;Kim, Kyong Ju;Park, Chan Sik
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Radio Frequency Identification (RFID) has been applied to the construction industry for improving the efficiency of material and process management. Most RFID-related studies have focused on building or plant construction. The application of RFID has been limited in pipeline construction projects where materials are stored and stacked across a large construction site. This paper investigates practical issues in pipeline construction, improves the read rates of RFID tags, and tests their utility by putting them into practice. This paper demonstrates the benefits that may be expected with the use of improved RFID tags and the development of an automated pipeline construction management system. As a result, pipeline construction management time decreased by 28 hours per month compared to the conventional method. Cost decreased by about 26%.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Cavitation inception in oil hydraulic pipeline (유압관로에서의 캐비테이션 초생)

  • 이일영;염만오;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.46-52
    • /
    • 1988
  • The cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below-1 MPa(absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. In order to interpret the experimental results on cavitation inception, the growth of a spherical bubble in viscous compressible fluid due to a stepwise pressure drop was investigated by numerical analysis, and the critical bubble radius was obtained. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised conditions about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

  • PDF