• Title/Summary/Keyword: large optics

Search Result 351, Processing Time 0.025 seconds

Optimization of Tilted Bragg Grating Tunable Filters Based on Polymeric Optical Waveguides

  • Park, Tae-Hyun;Huang, Guanghao;Kim, Eon-Tae;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.214-220
    • /
    • 2017
  • A wavelength filter based on a polymer Bragg reflector has received much attention due to its simple structure and wide tuning range. Tilted Bragg gratings and asymmetric Y-branches are integrated to extract the reflected optical signals in different directions. To optimize device performance, design procedures are thoroughly considered and various design parameters are applied to fabricated devices. An asymmetric Y-branch with an angle of $0.3^{\circ}$ produced crosstalk less than -25 dB, and the even-odd mode coupling was optimized for a grating tilt angle of $2.5^{\circ}$, which closely followed the design results. Through this experiment, it was confirmed that this device has a large manufacturing tolerance, which is important for mass production of this optical device.

Optical Performance Degradation Effects by Fabrication Errors of Circular-type Computer Generated Holograms

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1657-1662
    • /
    • 2018
  • A null test method which relies on a computer generated hologram (CGH) is widely used to measure a large aspheric surface. For precise measurements of the surface shape of an aspheric optics, the CGH must precisely generate a wavefront that can fit on the ideal surface shape of the aspheric optics. If fabrication errors arise in the CGH, an unwanted wavefront will be generated and the measuring result will lack trustworthiness. Thus far, there has been limited research on wavefronts generated by CGH using only linear-type binary grating models. In this study, a theoretical error model of a circular-type zone plate, the most commonly used types for CGH patterns, is suggested. The proposed error model is checked by simulations and experiments.

The Influence of Cental Obstruction and Gaussian Factor on the Central Spot Distribution and the Encircled Energy (굉학계의 중앙 차폐와 가우시안 인자가 중심 Spot 분포와 Encircled Energy에 미치는 영향)

  • Park, Seong-Jong;Sim, Sang-Hyun;Chung, Chang-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.347-355
    • /
    • 2005
  • We investigate the distribution of central spot and the encircled energy in order to assess the performance of central obstructed optical system having central obstruction, when the central obstruction and the degree of truncated Gaussian amplitude of incident beam change. When the radius of central obstruction increases the radius of central spot on the image plane decreases, and when the degree of truncated Gaussian amplitude of incident beam increases the radius of central spot on the image plane increases. As the central obstruction and the degree of truncated Gaussian amplitude of incident beam increase, the depth of focus increases and the encircled energy of central spot decreases. We know from theses results that the effect of Gaussian factor is small as the central obstruction increases. These results was applied to develope the large optical reflection system.

  • PDF

Optical Properties of Annealed ZnS Single Crystal (열처리한 ZnS 단결정의 광학적 특성)

  • Lee, Il Hun;Ahan, Chun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.97-103
    • /
    • 1999
  • Zinc sulfide is a ll-VI compound with a large direct band gap in the near-UV region and a promising material for blur-light emitting diode and laser diode. It was identified that the structure had zinc blonde structure through the analysis of X-ray diffraction patterns. It's lattice constant was measured to be $a_o=5.411{\AA}$. The optical absorption, photocurrent, and photoluminescence spectra were measured to investigate the optical properties of zinc sulfide single crystal. The optical energy band gap measured at room temperature was 3.61eV The energy band gap of zinc sulfide annealed in zinc vapor at $800^{\circ}C$ was lower 0.1eV than that of as-grown zinc sulfide through the analysis of the photocurrent spectra. The photoluminescence spectra were measured ranging from 30K to 293K for the two cases of as-grown and annealed zinc sulfide. As-grown ZnS single crystal had peaks at 350nm, 392nm, 465nm, and annealed zinc sulfide had peaks at 349nm.

  • PDF

A Study of the Effects of Use upon RGP Contact Lens Surface Ultrastructure (RGP Contact Lens 표면 미세구조에 대한 사용 효과의 연구)

  • Kim, Douk-Hoon;Sung, A-Young;Crossman, Stanley
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.71-75
    • /
    • 2006
  • The aim of this study was to analyze the surface ultrastructure of RGP contact lenses post-use The RGP contact lenses, to investigate, were selected after one month, six months and one year of wear by the subjects. The anterior and posterior surfaces of these RGP contact lenses were inspected by a scanning electron microscope. The results were the following: 1. After one month of RGP contact lens use the anterior and posterior surfaces appeared clean and clear as originally. 2. After six months the anterior surface had several scars, dips, cracks and scratches. Upon the posterior surface appeared several foreign bodies and microorganisms. 3. After one year there was large scale damage and many foreign bodies were observed. Therefore, extended use of RGP contact lenses has shown increasing physical damage and extensive foreign body accumulation upon the ultrastructure of the lens surface.

  • PDF

Optimal Design of Secondary Optics for Narrowing the Beam Angle of an LED Lamp with a Large-Area COB-type LED Package (대면적 COB-type LED 패키지를 포함한 LED 램프의 좁은 광속각 구현을 위한 2차 광학계 최적 설계)

  • Kim, Bongjun;Kim, Dae-Chan;O, Beom-Hwan;Park, Se-Geun;Kim, Bongho;Lee, Seung Gol
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.78-84
    • /
    • 2014
  • In this paper secondary optics for an LED lamp with a narrow beam angle of $15^{\circ}$ were optimized by using a two-reflector system, to reduce both its size and the occurrence of satellite rings. The conic constant and the curvature of the primary reflector were determined by considering the relation of the source size to the beam angle, and the optimal position and radius of the secondary reflector were found for reducing the occurrence of satellite rings. Luminous flux efficiency was about 80%.

Tolerance Analysis Method of Camera Optics Using Floating System (플로팅 시스템이 적용된 카메라 광학계의 공차 분석)

  • Son, Hyun Jun;Ryu, Jae Myung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.303-309
    • /
    • 2022
  • Since the pixel size of the image sensor used in optical systems is gradually decreasing, the resolution specification of the optical system should be inevitably higher. If aberration change according to the eccentricity of a specific lens group occurs, only the amount of eccentricity of a specific lens group may be calculated with the traditional resolution adjustment method so that the aberration of the optical system is minimized to a certain extent. As a result, it is possible to increase the resolution of the optical system and to respond to a sensor with a large number of pixels. However, in the traditional method, there should be no change in specific aberration due to the eccentricity of a specific lens group. In this paper, we propose a new method to eliminate such a limitation of the traditional method in a camera optical system with a floating system, which is to choose and control the arbitrary two lens groups to easily minimize the eccentricity of the optical system in order to obtain an optical system with high resolution.

Preliminary design of control software for SDSS-V Local Volume Mapper Instrument

  • Kim, Changgon;Ji, Tae-geun;Ahn, Hojae;Yang, Mingyeong;Lee, Sumin;Kim, Taeeun;Pak, Soojong;Konidaris, Nicholas P.;Drory, Niv;Froning, Cynthia S.;Hebert, Anthony;Bilgi, Pavan;Blanc, Guillermo A.;Lanz, Alicia E.;Hull, Charles L;Kollmeier, Juna A.;Ramirez, Solange;Wachter, Stefanie;Kreckel, Kathryn;Pellegrini, Eric;Almeida, Andr'es;Case, Scott;Zhelem, Ross;Feger, Tobias;Lawrence, Jon;Lesser, Michael;Herbst, Tom;Sanchez-Gallego, Jose;Bershady, Matthew A;Chattopadhyay, Sabyasachi;Hauser, Andrew;Smith, Michael;Wolf, Marsha J;Yan, Renbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2021
  • The Local Volume Mapper(LVM) project in the fifth iteration of the Sloan Digital Sky Survey (SDSS-V) will produce large integral-field spectroscopic survey data to understand the physical conditions of the interstellar medium in the Milky Way, the Magellanic Clouds, and other local-volume galaxies. We are developing the LVM Instrument control software. The architecture design of the software follows a hierarchical structure in which the high-level software packages interact with the low-level and mid-level software and hardware components. We adopt the spiral software development model in which the software evolves by iteration of sequential processes, i.e., software requirement analysis, design, code generation, and testing. This spiral model ensures that even after being commissioned, the software can be revised according to new operational requirements. We designed the software by using the Unified Modeling Language, which can visualize functional interactions in structure diagrams. We plan to use the SDSS software framework CLU for the interaction between components, based on the RabbitMQ that implemented the Advanced Message Queuing Protocol (AMQP).

  • PDF

Scattering Model for Electrical-Large Target Employing MLFMA and Radar Imaging Formation

  • Wu, Xia;Jin, Yaqiu
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.166-170
    • /
    • 2010
  • To numerically calculate electromagnetic scattering from the electrical-large three-dimensional(3D) objects, the high-frequency approaches have been usually applied, but the accuracy and feasibility of these geometrical and physical optics(GO-PO) approaches, to some extent, are remained to be improved. In this paper, a new framework is developed for calculation of the near-field scattering field of an electrical-large 3D target by using a multilevel fast multipole algorithm(MLFMA) and generation of radar images by using a fast back-projection(FBP) algorithm. The MPI(Message Passing Interface) parallel computing is carried out to multiply the calculation efficiency greatly. Finally, a simple example of perfectly electrical conducting(PEC) patch and a canonical case of Fighting Falcon F-16 are presented.

A Swing-Arm On-Machine Inspection Method for Profile Measurement of Large Optical Surface in Lapping Process

  • Sung In Kyoung;Oh Chang Jin;Lee Eung Suk;Kim Ock Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1576-1581
    • /
    • 2005
  • Generally, the optical components are fabricated by grinding, lapping, and polishing. And, those processes take long time to obtain such a high surface quality. Therefore, in the case of large optical component, the on-machine inspection (OMI) is essential. Because, the work piece is fragile and difficult to set up for fabricating and measuring. This paper is concerned about a swing-arm method for measuring surface profile of large optical concave mirror. The measuring accuracy and uncertainty for suggested method are studied. The experimental results show that this method is useful specially in lapping process with the accuracy of $3\~5\;{\mu}m$. Those inspection data are provided for correcting the residual figuring error in lapping or polishing processes.