DOI QR코드

DOI QR Code

Optical Performance Degradation Effects by Fabrication Errors of Circular-type Computer Generated Holograms

  • Kim, Young-Gwang (Department of Science of Measurement, University of Science and Technology (UST)) ;
  • Rhee, Hyug-Gyo (Department of Science of Measurement, University of Science and Technology (UST)) ;
  • Ghim, Young-Sik (Department of Science of Measurement, University of Science and Technology (UST))
  • Received : 2018.07.27
  • Accepted : 2018.09.05
  • Published : 2018.11.30

Abstract

A null test method which relies on a computer generated hologram (CGH) is widely used to measure a large aspheric surface. For precise measurements of the surface shape of an aspheric optics, the CGH must precisely generate a wavefront that can fit on the ideal surface shape of the aspheric optics. If fabrication errors arise in the CGH, an unwanted wavefront will be generated and the measuring result will lack trustworthiness. Thus far, there has been limited research on wavefronts generated by CGH using only linear-type binary grating models. In this study, a theoretical error model of a circular-type zone plate, the most commonly used types for CGH patterns, is suggested. The proposed error model is checked by simulations and experiments.

Keywords

References

  1. S. Reichelt, R. Freimann and H. J. Tiziani, Optics communications 200, 107 (2001). https://doi.org/10.1016/S0030-4018(01)01640-6
  2. J. M. Asfour and A. G. Poleshchuk, Journal of Optical Society of America 23, 172 (2006). https://doi.org/10.1364/JOSAA.23.000172
  3. J. C. Wyant and V. P. Bennett, Appl. Opt. 11, 2833 (1972). https://doi.org/10.1364/AO.11.002833
  4. H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel and U. Hofbauer, Proc. SPIE 4440, 109 (2001).
  5. H. G. Rhee, J. B. Song, D. I. Kim, Y. W. Lee and K. S. Ha, J. Korean Phys. Soc. 50, 1032 (2007). https://doi.org/10.3938/jkps.50.1032
  6. H. G. Rhee and Y. W. Lee, Opt. Express 18, 1734 (2010). https://doi.org/10.1364/OE.18.001734
  7. N. R. Heckenberg, R. McDuff, C. P. Smith and A. G. White, Opt. Letters 17, 221 (1992). https://doi.org/10.1364/OL.17.000221
  8. M. V. R. K. Murty, J. Opt. Soc. America 53, 568 (1963). https://doi.org/10.1364/JOSA.53.000568
  9. T. Honda, Y. Kawamoto, H. Guan, M. Yomaguchi and N. Ohyama, Proc. SPIE 1720, 305 (1992).
  10. M. Haruna, M. Takahashi, K.Wakagayashi and H. Nishigara, Appl. Opt. 29, 5120 (1990). https://doi.org/10.1364/AO.29.005120
  11. M. T. Gale, M. Rossi, J. Pedersen and H. Schutz, Optical Engineering 33, 3556 (1994). https://doi.org/10.1117/12.179892
  12. Y. Xie, Z. Lu and F. Li, Opt. Express 12, 1810 (2004). https://doi.org/10.1364/OPEX.12.001810
  13. H. G. Rhee and Y. W. Lee, J. Korean Phys. Soc. 58, 1120 (2011). https://doi.org/10.3938/jkps.58.1120
  14. Y. G. Kim, H. G. Rhee, Y. S. Ghim, H. S. Yang and Y. W. Lee, Opt. Express 25 1636 (2017). https://doi.org/10.1364/OE.25.001636
  15. P. Zhou and J. H. Burge, Opt. Express 15, 15410 (2007). https://doi.org/10.1364/OE.15.015410
  16. P. Zhou and J. H. Burge, Appl. Opt. 46, 657 (2007). https://doi.org/10.1364/AO.46.000657
  17. W. Cai, P. Zhou, C. Zhao and J. H. Burge, Appl. Opt. 53, 2477 (2014). https://doi.org/10.1364/AO.53.002477
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.
  19. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992), Chap. 4.
  20. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 2.
  21. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4.