DOI QR코드

DOI QR Code

Tolerance Analysis Method of Camera Optics Using Floating System

플로팅 시스템이 적용된 카메라 광학계의 공차 분석

  • Son, Hyun Jun (Department of Optics and Sensors, Hannam University) ;
  • Ryu, Jae Myung (Department of Optical Engineering, Kumoh National Institute of Technology) ;
  • Jo, Jae Heung (Department of Optics and Sensors, Hannam University)
  • 손현준 (한남대학교 대학원 광.센서공학과) ;
  • 유재명 (국립금오공과대학교 광시스템공학과) ;
  • 조재흥 (한남대학교 대학원 광.센서공학과)
  • Received : 2022.10.31
  • Accepted : 2022.11.23
  • Published : 2022.12.25

Abstract

Since the pixel size of the image sensor used in optical systems is gradually decreasing, the resolution specification of the optical system should be inevitably higher. If aberration change according to the eccentricity of a specific lens group occurs, only the amount of eccentricity of a specific lens group may be calculated with the traditional resolution adjustment method so that the aberration of the optical system is minimized to a certain extent. As a result, it is possible to increase the resolution of the optical system and to respond to a sensor with a large number of pixels. However, in the traditional method, there should be no change in specific aberration due to the eccentricity of a specific lens group. In this paper, we propose a new method to eliminate such a limitation of the traditional method in a camera optical system with a floating system, which is to choose and control the arbitrary two lens groups to easily minimize the eccentricity of the optical system in order to obtain an optical system with high resolution.

최근에 광학계에서 사용하는 촬상 소자의 화소 크기가 점차 작아지고 있기 때문에 광학계의 해상력 규격은 점차 높아지고 있다. 기존의 방법에서는 특정 렌즈군의 편심에 따른 수차 변화가 발생할 때, 광학계의 수차가 어느 정도 최소화되도록 특정 렌즈군의 편심량을 계산하는 방법으로 광학계의 해상력을 높여서 고화소의 광학계의 촬상 소자에 대응한다. 다만 기존의 방법은 특정 렌즈군의 편심에 따른 다른 특정 수차의 변화가 없어야 한다는 조건이 있다. 본 논문에서는 이러한 제한 없이 플로팅 시스템이 적용된 카메라 광학계에서 임의로 두 개의 렌즈군을 선택해서 편심을 조절함으로써 카메라 광학계의 해상력을 높이는 새로운 방법을 제안하고자 한다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 지역우수과학자지원사업임(과제번호: NRF-2020R1I1A3052712).

References

  1. G. H. Smith, Camera Lenses: from Box Camera to Digital (SPIE Press, Washington, USA, 2006), Chapter 1.
  2. J. Reilly, "Canon EOS DSLR autofocus explained," (The-Digital-Picture.com, Published date: 2014), http://www.the-digitalpicture.com/Photography-Tips/canon-eos-dslr-autofocusexplained.aspx (Accessed date: Nov. 2022).
  3. G. C. Holst, CCD Arrays, Cameras, and Displays (Society of Photo Optical, USA, 2006), Chapter 6.
  4. O. Kazunori, "Macro lens," Japan Patent 2004302170A (2004).
  5. T. Shizuka and Y. Norikazu, "Retrofocus type wide-angle lens," Japan Patent 2001330771A (2001).
  6. J.-M. Ryu, "Telephoto lens system and electronic apparatus having the same," US Patent 9042038B2 (2015).
  7. J. M. Ryu, Y. S. Kim, J. H. Jo, G. M. Kang, H. J. Lee, and H. K. Lee, "Statistical analysis of focus adjustment method for a floating imaging system with symmetric error factors," Korean J. Opt. Photonics 23, 189-196 (2012). https://doi.org/10.3807/KJOP.2012.23.5.189
  8. S. Magarill, "Optomechanical sensitivity and tolerancing," Proc. SPIE 3786, 220-228 (1999).
  9. H. Choi and J. Ryu, "Design of wide angle and large aperture optical system with inner focus for compact system camera applications," Appl. Sci. 10, 179 (2020). https://doi.org/10.3390/app10010179
  10. J.-M. Ryu, "Macro lens system and image pickup device including the same," US Patent 8736975B2 (2012).
  11. H. Choi, J.-M. Ryu, and J.-Y. Yeom, "Development of a double-gauss lens based setup for optoacoustic applications," Sensors 17, 496 (2017). https://doi.org/10.3390/s17030496
  12. Nikon Corp., "Industrial micro lens," (Nikon Corp., Published date: 2022), https://www.nikon.com/products/industrial-lenses/lineup/micro/ (Accessed date: Nov. 2022).