Browse > Article
http://dx.doi.org/10.3938/jkps.73.1657

Optical Performance Degradation Effects by Fabrication Errors of Circular-type Computer Generated Holograms  

Kim, Young-Gwang (Department of Science of Measurement, University of Science and Technology (UST))
Rhee, Hyug-Gyo (Department of Science of Measurement, University of Science and Technology (UST))
Ghim, Young-Sik (Department of Science of Measurement, University of Science and Technology (UST))
Abstract
A null test method which relies on a computer generated hologram (CGH) is widely used to measure a large aspheric surface. For precise measurements of the surface shape of an aspheric optics, the CGH must precisely generate a wavefront that can fit on the ideal surface shape of the aspheric optics. If fabrication errors arise in the CGH, an unwanted wavefront will be generated and the measuring result will lack trustworthiness. Thus far, there has been limited research on wavefronts generated by CGH using only linear-type binary grating models. In this study, a theoretical error model of a circular-type zone plate, the most commonly used types for CGH patterns, is suggested. The proposed error model is checked by simulations and experiments.
Keywords
Computer generated hologram; Optical performance degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Honda, Y. Kawamoto, H. Guan, M. Yomaguchi and N. Ohyama, Proc. SPIE 1720, 305 (1992).
2 M. Haruna, M. Takahashi, K.Wakagayashi and H. Nishigara, Appl. Opt. 29, 5120 (1990).   DOI
3 M. T. Gale, M. Rossi, J. Pedersen and H. Schutz, Optical Engineering 33, 3556 (1994).   DOI
4 Y. Xie, Z. Lu and F. Li, Opt. Express 12, 1810 (2004).   DOI
5 H. G. Rhee and Y. W. Lee, J. Korean Phys. Soc. 58, 1120 (2011).   DOI
6 Y. G. Kim, H. G. Rhee, Y. S. Ghim, H. S. Yang and Y. W. Lee, Opt. Express 25 1636 (2017).   DOI
7 P. Zhou and J. H. Burge, Opt. Express 15, 15410 (2007).   DOI
8 J. M. Asfour and A. G. Poleshchuk, Journal of Optical Society of America 23, 172 (2006).   DOI
9 J. C. Wyant and V. P. Bennett, Appl. Opt. 11, 2833 (1972).   DOI
10 P. Zhou and J. H. Burge, Appl. Opt. 46, 657 (2007).   DOI
11 W. Cai, P. Zhou, C. Zhao and J. H. Burge, Appl. Opt. 53, 2477 (2014).   DOI
12 J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.
13 S. Reichelt, R. Freimann and H. J. Tiziani, Optics communications 200, 107 (2001).   DOI
14 D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992), Chap. 4.
15 J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 2.
16 J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4.
17 N. R. Heckenberg, R. McDuff, C. P. Smith and A. G. White, Opt. Letters 17, 221 (1992).   DOI
18 H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel and U. Hofbauer, Proc. SPIE 4440, 109 (2001).
19 H. G. Rhee, J. B. Song, D. I. Kim, Y. W. Lee and K. S. Ha, J. Korean Phys. Soc. 50, 1032 (2007).   DOI
20 H. G. Rhee and Y. W. Lee, Opt. Express 18, 1734 (2010).   DOI
21 M. V. R. K. Murty, J. Opt. Soc. America 53, 568 (1963).   DOI