• Title/Summary/Keyword: large flexible structures

Search Result 136, Processing Time 0.033 seconds

Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring

  • Grosse, Christian U.;Glaser, Steven D.;Kruger, Markus
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.197-209
    • /
    • 2010
  • The structural state of a bridge is currently examined by visual inspection or by wired sensor techniques, which are relatively expensive, vulnerable to inclement conditions, and time consuming to undertake. In contrast, wireless sensor networks are easy to deploy and flexible in application so that the network can adjust to the individual structure. Different sensing techniques have been used with such networks, but the acoustic emission technique has rarely been utilized. With the use of acoustic emission (AE) techniques it is possible to detect internal structural damage, from cracks propagating during the routine use of a structure, e.g. breakage of prestressing wires. To date, AE data analysis techniques are not appropriate for the requirements of a wireless network due to the very exact time synchronization needed between multiple sensors, and power consumption issues. To unleash the power of the acoustic emission technique on large, extended structures, recording and local analysis techniques need better algorithms to handle and reduce the immense amount of data generated. Preliminary results from utilizing a new concept called Acoustic Emission Array Processing to locally reduce data to information are presented. Results show that the azimuthal location of a seismic source can be successfully identified, using an array of six to eight poor-quality AE sensors arranged in a circular array approximately 200 mm in diameter. AE beamforming only requires very fine time synchronization of the sensors within a single array, relative timing between sensors of $1{\mu}s$ can easily be performed by a single Mote servicing the array. The method concentrates the essence of six to eight extended waveforms into a single value to be sent through the wireless network, resulting in power savings by avoiding extended radio transmission.

Incremental Clustering of XML Documents based on Similar Structures (유사 구조 기반 XML 문서의 점진적 클러스터링)

  • Hwang Jeong Hee;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.699-709
    • /
    • 2004
  • XML is increasingly important in data exchange and information management. Starting point for retrieving the structure and integrating the documents efficiently is clustering the documents that have similar structure. The reason is that we can retrieve the documents more flexible and faster than the method treating the whole documents that have different structure. Therefore, in this paper, we propose the similar structure-based incremental clustering method useful for retrieving the structure of XML documents and integrating them. As a novel method, we use a clustering algorithm for transactional data that facilitates the large number of data, which is quite different from the existing methods that measure the similarity between documents, using vector. We first extract the representative structures of XML documents using sequential pattern algorithm, and then we perform the similar structure based document clustering, assuming that the document as a transaction, the representative structure of the document as the items of the transaction. In addition, we define the cluster cohesion and inter-cluster similarity, and analyze the efficiency of the Proposed method through comparing with the existing method by experiments.

A Study on Base Isolation Performance and Phenomenological Model of E-Shape Steel Hysteretic Damper (E-Shape 강재이력댐퍼의 수치모델과 기초격리구조물의 지진응답)

  • Hwang, Inho;Ju, Minkwan;Sim, Jongsung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.685-690
    • /
    • 2008
  • Recently, as large structures become lighter and more flexible, the necessity of structural control for reducing excessive displacement and acceleration due to seismic excitation is increased. As a means to minimize seismic damages, various base isolation systems are adopted or considered for adoption. In this study, a base isolation system using hysteretic damper is shown to effectively protect structures against earthquakes. A mechanical model is determined that can effectively portray the behavior of a typical E-shape device. Comparison with experimental results for a hysteretic damper indicates that the model is accurate over a wide range of operating conditions and adequate for analysis. The seismic performance of hysteretic dampers are studied and compared with the conventional systems as a base isolation system. A five-story building is modeled and the seismic performance of the systems subjected to three different earthquake is compared. The results show that the hysteretic damper system can provide superior protection than the other systems for a wide range of ground motions.

Behaviors of Pile Croup Installed Near Inclined Ground (경사지반에 인접하여 설치된 무리말뚝의 거동연구)

  • Chae, Kwang-Seok;Ugai, Keizo;Yoon, Gil-Lim
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.53-64
    • /
    • 2003
  • Many transmission towers, high-rise buildings and bridges are constructed near steep slopes and are supported by large-diameter piles. These structures may be subjected to large lateral loads, such as violent winds and earthquakes. Widely used types of foundations for these structures are pier foundations, which have large-diameters with high stiffness. The behavior of a pier foundation subjected to lateral loads is similar to that of a short rigid pile because both elements seem to fail by rotation developing passive resistance on opposite faces above and below the rotation point, unlike the behavior of a long flexible pile. This paper describes the results of several numerical studies performed with a three-dimensional finite element method (FEM) of model tests of a laterally loaded short pile located near slopes, respectively. In this paper, the results of model tests of single piles and pile groups subjected to lateral loading, in homogeneous sand with 30$^{\circ}$ slopes and horizontal ground were analyzed by the 3-D FE analyses. The pile was assumed to be linearly elastic. The sand was assumed to have non-associative characteristics, following the MC-DP model. The failure criterion is governed by the Mohr-Coulomb equation and the plastic potential is given by the Drucker-Prager equation. The main purpose of this paper is the validation of the 3-D elasto-plastic FEM by comparisons with the experimental data.

Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method (Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발)

  • Cho, Haeseong;Joo, HyunShig;Lee, Younghun;Gwak, Min-cheol;Shin, SangJoon;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.775-780
    • /
    • 2016
  • In this paper, a computational algorithm of an improved and versatile structural analysis applicable for large-size flexible nonlinear structures is developed. In more detail, nonlinear finite element based on the co-rotational (CR) framework is developed. Then, a finite element tearing and interconnecting method using local Lagrange multipliers (FETI-local) is combined with the nonlinear CR finite element. The resulting computational algorithm is presented and applied for nonlinear static analyses, i.e., cantilevered beam and multibody structure. Finally, the proposed analysis is evaluated with regard to its parallel computation performance, and it is compared with those obtained by serial computation using the sparse matrix linear solver, PARDISO.

저온 공정 온도에서 $Al_2O_3$ 게이트 절연물질을 사용한 InGaZnO thin film transistors

  • 우창호;안철현;김영이;조형균
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.11-11
    • /
    • 2010
  • Thin-film-transistors (TFTs) that can be deposited at low temperature have recently attracted lots of applications such as sensors, solar cell and displays, because of the great flexible electronics and transparent. Transparent and flexible transistors are being required that high mobility and large-area uniformity at low temperature [1]. But, unfortunately most of TFT structures are used to be $SiO_2$ as gate dielectric layer. The $SiO_2$ has disadvantaged that it is required to high driving voltage to achieve the same operating efficiency compared with other high-k materials and its thickness is thicker than high-k materials [2]. To solve this problem, we find lots of high-k materials as $HfO_2$, $ZrO_2$, $SiN_x$, $TiO_2$, $Al_2O_3$. Among the High-k materials, $Al_2O_3$ is one of the outstanding materials due to its properties are high dielectric constant ( ~9 ), relatively low leakage current, wide bandgap ( 8.7 eV ) and good device stability. For the realization of flexible displays, all processes should be performed at very low temperatures, but low temperature $Al_2O_3$ grown by sputtering showed deteriorated electrical performance. Further decrease in growth temperature induces a high density of charge traps in the gate oxide/channel. This study investigated the effect of growth temperatures of ALD grown $Al_2O_3$ layers on the TFT device performance. The ALD deposition showed high conformal and defect-free dielectric layers at low temperature compared with other deposition equipments [2]. After ITO was wet-chemically etched with HCl : $HNO_3$ = 3:1, $Al_2O_3$ layer was deposited by ALD at various growth temperatures or lift-off process. Amorphous InGaZnO channel layers were deposited by rf magnetron sputtering at a working pressure of 3 mTorr and $O_2$/Ar (1/29 sccm). The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. The TFT devices were heat-treated in a furnace at $300^{\circ}C$ and nitrogen atmosphere for 1 hour by rapid thermal treatment. The electrical properties of the oxide TFTs were measured using semiconductor parameter analyzer (4145B), and LCR meter.

  • PDF

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF

Research Trends in Organic Light Emitting Diode (유기 전기 발광소자의 원리와 연구동향)

  • Shin, Hwangyu;Kim, Seungho;Lee, Jaehyun;Lee, Hayoon;Jung, Hyocheol;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.381-388
    • /
    • 2015
  • Organic Light Emitting Diodes (OLEDs) have been receiving great attention in academic and industrial fields, and it is being actively applied to mobile display, as well as large area TV and next-generation flexible display due to their excellent advantages. In addition, the scope of research on OLED materials and device fabrication technology is getting expanded. This review discusses the principle and basic composition of OLED and also classifies OLED materials with different chemical structures according to their usages. Systematic classification of OLEDs by technical concept and material characteristics can help developing new emitting materials.

Pressure Sensitive Device Using Conductive and Porous Structures (전도성 다공성 구조 압력감지소자)

  • So, Hye-Mi;Park, Cheolmin;Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.601-605
    • /
    • 2014
  • Porous conductors are known to demonstrate excellent electrical, mechanical, and chemical resistance. These porous conductors demonstrated potential applications in various fields such as electrodes for supercapacitors, flexible heaters, catalytic electrodes, and sorbents. In this study, we described a pressure sensitive device using conductive and porous sponges. With an extremely simple "dipping and drying" process using a single-walled carbon nanotube (SWCNT) solution, we produced conductive sponges with sheet resistance of < $30k{\Omega}/sq$. These carbon nanotube sponges can be deformed into any shape elastically and repeatedly compressed to large strains without collapse. The pressure sensors developed from these sponges demonstrated high resistance change under pressure of up to a half of their initial resistance.

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.