• 제목/요약/키워드: large element

검색결과 3,114건 처리시간 0.034초

Natural Frequency Analysis of Spring-Manipulator System for Force Generation Utilizing Mechanical Resonance

  • Kobayashi, Jun;Ohkawa, Fujio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1651-1656
    • /
    • 2005
  • This paper describes a natural frequency analysis conducted to find out a suitable working area for a spring-manipulator system generating a large vibrating force with mechanical resonance. Large force generation is one of the functions that we hope for a robot. For example, a weeding robot is required to generate a large force, because some weeds have roots spreading deeply and tightly. The spring-manipulator system has a spring element as an end-effector, so it can be in a state of resonance with the elasticity of the spring element and the inertial characteristics of the manipulator. A force generation method utilizing the mechanical resonance has potential to produce a large force that cannot be realized by a static method. A method for calculating a natural frequency of a spring-manipulator system with the generalized inertia tensor is proposed. Then the suitable working area for the spring-manipulator system is identified based on a natural frequency analysis. If a spring-manipulator system operates in the suitable working area, it can sustain mechanical resonance and generate a large vibrating force. Moreover, it is shown that adding a mass at the tip of the manipulator expands the suitable working area.

  • PDF

셀룰로오스와 PET 복합체로 만들어진 가습소자의 가습성능 (Performance of Humidifying Element Made of Cellulose and PET Composite)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1658-1663
    • /
    • 2015
  • 실내의 습도제어를 위하여 공조기 내에는 가습소자가 설치된다. 지금까지 대부분의 가습소자는 유리섬유로 만들어진 외제품이 널리 사용되어 왔다. 본 연구에서는 이 외제품을 대체할 셀룰로오스와 PET 복합체로 만들어진 가습소자를 개발하고 유리섬유로 만들어진 Glasdek 소자의 성능과 비교하였다. 시험은 소자를 항온항습실 내에 설치된 흡입식 풍동입구에 설치하고 물질전달량과 압력손실을 측정하였다. 실험결과를 $j_m$과 f인자로 나타내었을 때, 개발품의 $j_m$값이 33%~39%크고, f인자는 개발품이 0%~51% 작게 나타났다. Glasdek에 비하여 개발품의 $j_m$값이 큰 이유는 흡수도가 월등히(50% 가량) 크기 때문이고 f인자가 작은 이유는 소자 표면이 확연히 매끄럽기 때문이다. 한편, 동일 소비동력 대비 물질전달을 나타내는 $j_m/f^{1/3}$ 의 경우, 개발품이 약 36~63% 크게 나타났다.

상대 절점 변위를 이용한 비선형 유한 요소 해석법 (A Relative Nodal Displacement Method for Element Nonlinear Analysis)

  • 김완구;배대성
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.534-539
    • /
    • 2005
  • Nodal displacements are referred to the initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian furmulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid for structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacement sand traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One open loop and one closed loop structure undergoing large deformations are analyzed to demonstrate the efficiency and validity of the proposed method.

유한요소-전달강성계수법을 이용한 평판 구조물의 강제진동해석 (Forced Vibration Analysis of Plate Structures Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수
    • 한국소음진동공학회논문집
    • /
    • 제13권2호
    • /
    • pp.99-107
    • /
    • 2003
  • The finite element method(FEM) is the most widely used and powerful method for structural analysis. In general, in order to analyze complex and large structures, we have used the FEM. However, it is necessary to use a large amount of computer memory and computation time for solving accurately by the FEM the dynamic problem of a system with many degree-of-freedom, because the FEM has to deal with very large matrices in this case. Therefore, it was very difficult to analyze the vibration for plate structures with a large number of degrees of freedom by the FEM on a personal computer. For overcoming this disadvantage of the FEM without the loss of the accuracy, the finite element-transfer stiffness coefficient method(FE-TSCM) was developed. The concept of the FE-TSCM is based on the combination of modeling technique in the FEM and the transfer technique in the transfer stiffness coefficient method(TSCM). The merit of the FE-TSCM is to take the advantages of both methods, that is, the convenience of the modeling in the FEM and the computation efficiency of the TSCM. In this paper, the forced vibration analysis algorithm of plate structures is formulated by the FE-TSCM. In order to illustrate the accuracy and the efficiency of the FE-TSCM, results of frequency response analysis for a rectangular plate, which was adopted as a computational model, were compared with those by the modal analysis method and the direct analysis method which are based on the FEM.

3차원 입도분포를 고려한 락필재료의 대형삼축압축시험 수치모델링 (Numerical Modeling of Large Triaxial Compression Test with Rockfill Material Considering 3D Grain Size Distribution)

  • 노태길;전제성;이송
    • 한국지반환경공학회 논문집
    • /
    • 제13권10호
    • /
    • pp.55-62
    • /
    • 2012
  • 본 연구에서는 개별요소해석 프로그램인 $PFC^{3D}$를 이용하여 대입경 조립재료의 특정 입도분포를 구현하는 알고리즘을 개발하였다. 기존의 입자 형상이나 입도를 구현하기 위해 사용되었던 clump logic 또는 cluster logic을 사용하지 않으며 요소의 경계면 이탈 현상과 경계면 파괴 등을 방지할 수 있는 초기 개별요소 모델링 기법을 고안하였다. 최종적으로 대입경 조립재료에 대한 대형 삼축압축시험을 수치 모델링하고 실내시험 결과와 비교하였다. 해석 결과, 실제 시료의 입도분포와 매우 흡사한 분포의 개별요소를 생성할 수 있었고, 적정 미시물성치 산정 과정(calibration)을 통해 다양한 구속응력 조건에 대한 대입경 조립재료의 특정 입도분포하에서의 전체적인 수치 모델링이 가능하였다.

상대절점좌표를 이용한 비선형 유한요소해석법 (A Relative for Finite Element Nonlinear Structural Analysis)

  • 강기랑;조희제;배대성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.788-791
    • /
    • 2005
  • Nodal displacements are referred to the Initial configuration in the total Lagrangian formulation and to the last converged configuration in the updated Lagrangian formulation. This research proposes a relative nodal displacement method to represent the position and orientation for a node in truss structures. Since the proposed method measures the relative nodal displacements relative to its adjacent nodal reference frame, they are still small for a truss structure undergoing large deformations for the small size elements. As a consequence, element formulations developed under the small deformation assumption are still valid fer structures undergoing large deformations, which significantly simplifies the equations of equilibrium. A structural system is represented by a graph to systematically develop the governing equations of equilibrium for general systems. A node and an element are represented by a node and an edge in graph representation, respectively. Closed loops are opened to form a spanning tree by cutting edges. Two computational sequences are defined in the graph representation. One is the forward path sequence that is used to recover the Cartesian nodal displacements from relative nodal displacements and traverses a graph from the base node towards the terminal nodes. The other is the backward path sequence that is used to recover the nodal forces in the relative coordinate system from the known nodal forces in the absolute coordinate system and traverses from the terminal nodes towards the base node. One closed loop structure undergoing large deformations is analyzed to demonstrate the efficiency and validity of the proposed method.

  • PDF

형상최적화 향상을 위한 유한요소의 개선에 관한 연구 (A Study on the Modification of a Finite Element for Improving Shape Optimization)

  • 성진일;유정훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.367-371
    • /
    • 2001
  • In the shape optimization based on the finite element method, the accuracy of finite element analysis of a given structure is important to determine the final shape. In case of a bending dominant problem, finite element solutions by the full integration scheme are not reliable because of the locking phenomenon. Furthermore, in the process of shape optimization, the mesh distortion is large due to the change of the structure outline: therefore, we cannot guarantee the accurate result unless the finite element itself is accurate. We approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two-dimensional simple beam. Results show that the modified finite element have improved the optimization results.

  • PDF

Nonlinear analysis of fibre-reinforced plastic poles

  • Lin, Z.M.;Polyzois, D.;Shah, A.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.785-800
    • /
    • 1998
  • This paper deals with the nonlinear finite element analysis of fibre-reinforced plastic poles. Based on the principle of stationary potential energy and Novozhilov's derivations of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The formulations are applied to the fibre-reinforced plastic poles which are treated as conical shells. A semi-analytical finite element model based on the theory of shell of revolution is developed. Several aspects of the implementation of the geometric nonlinear analysis are discussed. Examples are presented to show the applicability of the nonlinear analysis to the post-buckling and large deformation of fibre-reinforced plastic poles.

지하공간에 관련된 수치해석의 사례연구 (Case study on numerical analyses related to large rock caverns)

  • 이근희
    • 터널과지하공간
    • /
    • 제2권1호
    • /
    • pp.152-163
    • /
    • 1992
  • The study of rock mass behaviour through a numerical analysis is important for the design, construction and maintenance of large rock caverns. The objectives of the numerical analysis are to design reasonably and construct safely the underground structures, to maintain them soundly after construction and to extend them securely for a desired period of time. Methods of numerical analyses included in this case study are the finite element method, the boundary element method, and the distinct element method. The numerical models are purely elastic, elastoplastic, visco-elastic, visco-plastic, easto-visco-plastic and jointed-discontinuous materials. The results of this case study indicate that the rock mass behaviour could be predicted exactly through continuous comparisons of the numerical results with the in-situ measurements.

  • PDF

회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구 (Study of of Flexible Multibody Dynamics with Rotary Inertia)

  • 김성수
    • 소음진동
    • /
    • 제6권3호
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF