• 제목/요약/키워드: large displacement analysis

검색결과 727건 처리시간 0.027초

감도해석기법을 이용한 전단벽 구조물의 최적변위제어 (Optimal Displacement Control of Shear Wall Structure using Sensitivity Analysis Technique)

  • 이한주;정성진;김호수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.121-128
    • /
    • 2005
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall structures subject to lateral loads. To this end the displacement sensitivity depending on behavior characteristics of shear wall structures is established. Also, the approximation concept that can preserve the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Resizing sections in the stiffness-based optimal design are assumed to be uniformly varying in size and the technique of member grouping is considered for the improvement of construction efficiency Two types of 11-story shear wall structures are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

패턴된 IPMC 작동기의 진동특성 (Vibration Characteristics of Patterned IPMC Actuator)

  • 전진한;오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.718-721
    • /
    • 2007
  • The ionic-polymer-metal-composite actuators have the best merit for bio-mimetic locomotion because of their large bending performance. Especially, they have the advantage for mimicking a fish-like motion because IPMCs are useful to be actuated in water. So we have developed IPMC actuators with multiple electrodes for realization of biomimetic motion. This actuator is fabricated by combining electroless plating and electroplating techniques capable of patterning precisely and controlling a thickness of Pt electrode layer. The FRF analysis was conducted by a mechanical shaker and direct electrical excitation which is based on sweep sine wave function. From this result, the proper young‘s modulus of Platinum was investigated and applied on expecting the vibration characteristics of patterned IPMC actuator. The calculated maximum displacement of the patterned IPMC was 2.32mm under an applied 4mN/mm. The natural frequency was increased however displacement was decreased in according to increase a thickness of Pt.

  • PDF

EFFECT OF DISPLACEMENT METHOD ON SAND BED LIQUEFACTION UNDER OSCILLATING WATER PRESSURE

  • HoWoongShon
    • 지구물리
    • /
    • 제6권3호
    • /
    • pp.131-137
    • /
    • 2003
  • In this paper the liquefaction of sand bed under oscillating water pressure are treated as a basic study of the prevention works against the scouring around the hydraulic structures. The results of the former resurch show that the occurrence of the liquefaction depends on both properties of the oscillating water pressure and of the sand layer. Considering the latter properties, that is , the resistivity against the liquefaction increases with the increase of the permeability of the sand bed, we propose the displcement method as one of the prevention works, which is a method to displace the upper layer of the sand bed by the sand with large permeability. The effects of this method are investigated theoretically and experimentally. By the experimental study, it is shown that the proposed displacement method has the apparent effect to prevent the liquefaction. The experimental results are explained fairly well by the theoretical analysis based on the theory of the flow through the elastic porous media.

  • PDF

공기스프링 방진대의 능동제어 (Active Control of Air-Spring Vibration Isolator)

  • 송진호;김규용;박영필
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.

근사화 개념을 이용한 삼차원 철골조 구조물의 횡변위 제어에 관한 연구 (Lateral Drift Control of 3-D Steel Structures Using Approximation Concept)

  • 이한주;임영도;김호수
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.96-102
    • /
    • 2004
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for 3-D steel frameworks subject to lateral loads. To this end, the displacement sensitivity depending on behavior characteristics of 3-D steel frameworks is established. Also, approximation concept that can preserve the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Resizing sections in the stiffness-based optimal design are assumed to be uniformly varying in size. Two types of 30-story frames are presented to illustrate the features of the Quantitative lateral drift control technique proposed in this study.

  • PDF

인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발 (Development of High Precision Actuator for Micro Press System by Inchworm Motor)

  • 최종필;남권선;이해진;이낙규;김병희
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

적층 접시스프링의 정적 거동 특성 (Static Behavior Characteristics of Disc Spring Stacks)

  • 김영흡;조승현;박동훈
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.47-53
    • /
    • 2013
  • The wide application of disc springs to the designing of mechanical products with space limit is mainly attributable to their property of sustaining large axial load with small displacement. Due to the impediments in expecting the final results caused by the significant differences existing between a single unit and a stacked form, the force-displacement characteristics of a single disc spring and stacked disc springs are mainly examined in this study. In particular, the hysteresis of the series stack and the parallel stack will be investigated through the FE analysis and the analytical results will finally be compared with the acquired experimental data. In the final result, the analytical results were in accordance with the experimental data.

외팔보 직교형 초음파 모터 개발 (Ultrasonic motor using orthogonal bending modes)

  • 서정무;허진;성하경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.889-890
    • /
    • 2006
  • The main purpose of this paper is to describe a novel ultrasonic motor which is suitable for small information devices. With a bending mode of a bimorph structure having relatively large displacement, the input voltage and frequency could be reduced. The overall shape of the motor is very simple, so it could be manufactured and miniaturized with ease. From the simulated results, such as mode and harmonic analysis, resonance mode, operating frequency, and displacement are determined. The experimental results are compared with the simulated one finally.

  • PDF

EFFICIENT COMPUTATION OF THE ACCELERATION OF THE CONTACT POINT BETWEEN ROTATING SURFACES AND APPLICATION TO CAM-FOLLOWER MECHANISM

  • LEE K.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.115-120
    • /
    • 2006
  • On a rotating contact surface of arbitrary shape, the relative velocity of the contact point sliding between the surfaces is computed with the basic geometries of the rotating surfaces, and the acceleration of the contact point between the contact surfaces is computed by using the relative velocity of the contact point. Thus the equation for the acceleration constraint between the contact surfaces in muitibody dynamics is not coupled with the parameters such as the relative velocity of the contact point. In case of the kinematic analysis, the acceleration of the contact point on any specific instant may also be efficiently computed by the present technique because the whole displacement of a full cycle need not be interpolated. Employing a cam-follower mechanism as a verification model, the acceleration of the contact point computed by the present technique is compared with that computed by differentiating the displacement interpolated with a large number of nodal points.

Estimation of structural dynamic characteristics of the Egyptian Obelisk of Theodosius

  • Saygili, Ozden
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.311-320
    • /
    • 2019
  • Obelisks are historical monuments. There are several obelisks dating from ancient Egyptian period, located around various parts of the world. The city of Istanbul is a home to the Obelisk of Theodosius at the Hippodrome. Due to the expectation of a large event in the near future, the evaluation of seismic response of the Obelisk gets importance. Therefore, in this study structural dynamic behavior of the Obelisk was investigated using discrete element approach. Nonlinear dynamic analyses were performed using real and synthetic time series. Real and synthetic ground motions analyzed from this study seems consistent with the earthquake hazard levels that would be expected at the site of the Obelisk in the occurrence of an event of moment magnitude above 7.0 near Istanbul. Results are evaluated in terms of variation of displacement, relative displacement of adjacent blocks, normal stress and shear stress in time.