• 제목/요약/키워드: large deflections

검색결과 132건 처리시간 0.019초

Development of monocular video deflectometer based on inclination sensors

  • Wang, Shuo;Zhang, Shuiqiang;Li, Xiaodong;Zou, Yu;Zhang, Dongsheng
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.607-616
    • /
    • 2019
  • The video deflectometer based on digital image correlation is a non-contacting optical measurement method which has become a useful tool for characterization of the vertical deflections of large structures. In this study, a novel imaging model has been established which considers the variations of pitch angles in the full image. The new model allows deflection measurement at a wide working distance with high accuracy. A monocular video deflectometer has been accordingly developed with an inclination sensor, which facilitates dynamic determination of the orientations and rotation of the optical axis of the camera. This layout has advantages over the video deflectometers based on theodolites with respect to convenience. Experiments have been presented to show the accuracy of the new imaging model and the performance of the monocular video deflectometer in outdoor applications. Finally, this equipment has been applied to the measurement of the vertical deflection of Yingwuzhou Yangtze River Bridge in real time at a distance of hundreds of meters. The results show good agreement with the embedded GPS outputs.

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.

Drift error compensation for vision-based bridge deflection monitoring

  • Tian, Long;Zhang, Xiaohong;Pan, Bing
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.649-657
    • /
    • 2019
  • Recently, an advanced video deflectometer based on the principle of off-axis digital image correlation was presented and advocated for remote and real-time deflection monitoring of large engineering structures. In engineering practice, measurement accuracy is one of the most important technical indicators of the video deflectometer. However, it has been observed in many outdoor experiments that data drift often presents in the measured deflection-time curves, which is caused by the instability of imaging system and the unavoidable influences of ambient interferences (e.g., ambient light changes, ambient temperature variations as well as ambient vibrations) in non-laboratory conditions. The non-ideal unstable imaging conditions seriously deteriorate the measurement accuracy of the video deflectometer. In this work, to perform high-accuracy deflection monitoring, potential sources for the drift error are analyzed, and a drift error model is established by considering these error sources. Based on this model, a simple, easy-to-implement yet effective reference point compensation method is proposed for real-time removal of the drift error in measured deflections. The practicality and effectiveness of the proposed method are demonstrated by in-situ deflection monitoring of railway and highway bridges.

Deflection ductility of RC beams under mid-span load

  • Bouzid, Haytham;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.585-594
    • /
    • 2021
  • Ductility is very important parameter in seismic design of RC members such as beams where it allows RC beams to dissipate the seismic energy. In this field, the curvature ductility has taken a large part of interest compared to the deflection ductility. For this reason, the present paper aims to propose a general formula for predicting the deflection ductility factor of RC beams under mid-span load. Firstly, the moment area theorem is used to develop a model in order to calculate the yield and the ultimate deflections; then this model is validated by using some results extracted from previous researches. Secondly, a general formula of deflection ductility factor is written based on the developed deflection expressions. The new formula is depended on curvature ductility factor, beam length, and plastic hinge length. To facilitate the use of this formula, a parametric study on the curvature ductility factor is conducted in order to write it in simple manner without the need for curvature calculations. Therefore, the deflection ductility factor can be directly calculated based on beam length, plastic hinge length, concrete strength, reinforcement ratios, and yield strength of steel reinforcement. Finally, the new formula of deflection ductility factor is compared with the model previously developed based on the moment area theorem. The results show the good performance of the new formula.

On nonlinear deflection analysis and dynamic response of sandwich plates based on a numerical method

  • Yong Huang;Zengshui Liu;Shihan Ma;Sining Li;Rui Yu
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.79-90
    • /
    • 2023
  • Nonlinear forced vibration properties of three-layered plates containing graphene platelets (GPL) filled skins and an auxetic core have been inquired within the present paper. Owning reduced weight as well as reduced stiffness, rectangle-shaped auxetic cores have been frequently made from novel techniques such as additive manufacturing. Here, the rectangle shape core is amplified via the graphene-filled layers knowing that the layers possess uniform and linear graphene gradations. The rectangle shape core has the equivalent material specifications pursuant to relative density value. The sandwich plate is formulated pursuant to Kirchhoff plate theory while a numerical trend has been represented to discretize the plate equations. Next, an analytical trend has been performed to establish the deflection-frequency plots. Large deflections, core density and GPL amplification have showed remarkable impacts on dynamic response of three-layered plates.

건축용 프리캐스트 프리스트레스트 역티형 보와 직사각형 보의 휨거동 비교 (Comparison on Flexural Behaviors of Architectural Precast Prestressed Rectangular and Inverted-tee Concrete Beams)

  • 유승룡
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.75-82
    • /
    • 2000
  • Flexural behaviors of two typical architectural precast beam sections ; inverted tee and rectangular - were compared and investigated. The heights of web in inverted tee beams are generally less than half of beam depth in building structures to accomodate the nib of double-tee where the total building height limited considerably. The inverted-tee beams are designed for parking live load - 500kgf/$\m^2$ and market - 1,200kgf/$\m^2$ according to the currently used typical shape in the domestic market building site in Korea. The bottom dimension and area of rectangular beams are same to those of inverted tee beams to compare the flexural behaviors of two beams. These two beams are also reinforced for similar strength. Four flexural tests are performed on two beams. Following results are obtained from the tests; 1) The rectangular beam is simpler in production, transportation, and election, and more economic than the inverted tee beam for these two beams with same dimension and similar strength. 1) The estimations of flexural strength of two beams by Strength Design Method and Strain Compatibility Method is fully complied with the result of tests. However, Strain Compatibility Method is slightly ore accurate than Strength Design Method. 2) Overall deflections of two type beam under the service loads are less than those of the allowable limit in ACI Code provision. 3) The rectangular beam is failed in large deflection (average 12.56mm large) than those of inverted tee beams. 4) The rectangular and inverted tee beams with 6m span develop initial flexural crackings under the 88% of full service loading even though they designed to satisfy the ACI tensile stress limit provisions.

경사 종동력을 받는 변단면 기하 비선형 캔틸레버 기둥의 수치해석 (Geometrical Non-linear Analyses of Tapered Cantilever Column Subjected to Sub-tangential Follower Force)

  • 이병구;오상진;이태은
    • 한국전산구조공학회논문집
    • /
    • 제26권1호
    • /
    • pp.29-38
    • /
    • 2013
  • 이 연구는 자유단에 경사 종동력을 받는 변단면 기하 비선형 캔틸레버 기둥의 수치해석에 관한 연구이다. 기둥의 단면은 휨 강성이 부재축을 따라 함수적으로 변화하는 변단면으로 선택하였다. 이러한 기둥의 정확탄성곡선을 지배하는 미분방정식을 대변형 이론을 이용하여 유도하였다. 이 미분방정식은 자유단 수직변위, 수평변위 및 회전각의 3개의 미지변수를 갖는다. 이 미분방정식을 반복법으로 수치해석하여 기둥의 미지변수와 정확탄성곡선을 산정하였다. 이 연구의 이론을 검증하기 위하여 실험실 규모의 실험을 실행하였다.

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

콘크리트 건조수축에 의한 합성거더의 장기거동 (Long-term Behavior of Steel-Concrete Composite Girders due to Concrete Shrinkage)

  • 배두병;윤석구;함상희
    • 한국강구조학회 논문집
    • /
    • 제16권6호통권73호
    • /
    • pp.807-818
    • /
    • 2004
  • 콘크리트의 건조수축에 의한 합성거더의 장기거동을 평가하기 위해 수행한 실험과 이론적 분석방법에 대해 기술하였다. 합성거더를 제작하여 장기간 실내실험을 통해 콘크리트의 건조수축에 따른 합성보의 처짐, 곡률변화 및 변형률변화를 측정하였으며, 실험결과를 AEMM(Age-adjusted Effective Modulus Method)을 이용한 해석치와 비교하였다. 또한 콘크리트의 건조수축에 의한 합성거더의 장기거동에 영향을 미치는 여러 변수들에 대한 해석을 수행하였다. 실험결과 합성거더의 장기거동은 AEMM에 의해 적절히 평가할 수 있다는 것을 확인할 수 있었다. 합성거더의 콘크리트 단면에 커다란 인장응력이 발생하기 때문에 연속교 부모멘트부뿐만 아니라 단순교 정모멘트부에도 횡방향균열이 발생할 수 있다는 것을 보였으며, 횡방향 균열을 무시하는 경우 강거더에 작용하는 응력이 과대평가 될 수 있다는 것을 확인하였다. 이상의 연구결과를 토대로 콘크리트의 건조수축에 의한 합성거더의 장기거동 평가시 콘크리트 단면에 발생할 수 있는 횡방향균열을 고려하는 것이 합리적이라고 판단된다.