• Title/Summary/Keyword: large area patterning

Search Result 73, Processing Time 0.029 seconds

Surface Patterning and Characterization of Food Packaging Films Using Femtosecond Laser (펨토초 레이저를 이용한 식품포장 필름의 표면 패터닝 및 특성)

  • Youngjin Cho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • In this study, the feasibility of laser patterning on the surface of food packaging polymer film was confirmed, and the surface patterning process conditions of femtosecond laser were established. In addition, it was proved that the surface properties of the film can be changed and controlled through the fabrication of various patterned films on the surface of food packaging films such as HDPE, PP, and PET. Various patterned surfaces, including large-scale circular patterns induced by a single femtosecond laser pulse, roughness patterns achieved by overlapping single pulses by 30%, straight line patterns, roughness patterns obtained by overlapping straight line patterns, and grid patterns formed by intersecting straight line patterns were fabricated. The characteristics of the patterned HDPE, PP, and PET films, based on the surface pattern structure and size, were analyzed using SEM, AFM, and contact angle measurements. Compared to the surface of each control film without femtosecond laser patterning, the contact angles of the surfaces of large-area circular patterning HDPE and PP films, large-area roughness patterning HDPE and PP films by overlapping 30% of single pulses, and large-area roughness patterning PET film by overlapping rectilinear patterning were in the range of 27.1-37.5 degree. This indicated that the HDPE, PP, and PET films became more hydrophilic after patterning. On the other hand, the HDPE film patterned with a large-scale grid pattern exhibited a contact angle of 120.4 degree, indicating that the HDPE film became more hydrophobic after patterning. Therefore, films that have been changed to hydrophilic surfaces through patterning can be used in anti-fouling applications where proteins, cells, viruses, and other food materials do not adhere or are easily detached. In addition, if a superhydrophobic surface of 150 degrees or more is fabricated through more precise lattice patterning in the future, it will be possible to use it for superhydrophobic surface applications such as self-cleaning.

Micro Patterning Using Near-Field Coupled Nano Probe Laser Photo Patterning Of Chloromethylated Polyimide Thin Film (클로로메틸 폴리이미드(CMPI) 박막과 근접장 나노 프로브 레이저 패터닝을 이용한 미세 형상 가공 기술)

  • 최무진;장원석;김재구;조성학;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.369-372
    • /
    • 2004
  • Photo-induced surface alignment is charming as a non-contact photo-patternable alignment technology which can be used in the next generation of displays, such as large area, multi-domain. For decades, many polymer film have been investigated and developed to be used in the photo alignment. Among these photoreactive materials, recently developed polyimide, Chloromethylated Polyimide(CMPI) now became the focus of interests in this area because of its high photosensitivity and superior thermal stability. In this report, we present micro patterning method to form the nanoscale structure by Mask-Less laser patterning using this CMPI film and NSOM probe.

  • PDF

A Study on the Uniformity Improvement of Residual Layer of a Large Area Nanoimprint Lithography

  • Kim, Kug-Weon;Noorani, Rafigul I.;Kim, Nam-Woong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.19-23
    • /
    • 2010
  • Nanoimprint lithography (NIL) is one of the most versatile and promising technology for micro/nano-patterning due to its simplicity, high throughput and low cost. Recently, one of the major trends of NIL is large-area patterning. Especially, the research of the application of NIL to TFT-LCD field has been increasing. Technical difficulties to keep the uniformity of the residual layer, however, become severer as the imprinting area increases. In this paper we performed a numerical study for a large area NIL (the $2^nd$ generation TFT-LCD glass substrate ($370{\times}470$ mm)) by using finite element method. First, a simple model considering the surrounding wall was established in order to simulate effectively and reduce the computing time. Then, the volume of fluid (VOF) and grid deformation method were utilized to calculate the free surfaces of the resist flow based on an Eulerian grid system. From the simulation, the velocity fields and the imprinting pressure during the filling process in the NIL were analyzed, and the effect of the surrounding wall and the uniformity of residual layer were investigated.

Development of Induction Heating Apparatus for Rapid Heating of Metallic Mold (미세 임프린팅용 금속몰드의 급속가열을 위한 유도가열기구 개발)

  • Hong, S.K.;Lee, S.H.;Heo, Y.M.;Kang, J.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.199-204
    • /
    • 2007
  • Hot embossing, one of Nanoimprint Lithography(NIL) techniques, has been getting attention as an alternative candidate of next generation patterning technologies by the advantages of simplicity and low cost compared to conventional photolithographies. A typical hot embossing usually, however, takes more than ten minutes for one cycle of the process because of a long thermal cycling. Over the last few years a number of studies have been made to reduce the cycle time for hot embossing or similar patterning processes. The target of this research is to develop an induction heating apparatus for heating a metallic micro patterning mold at very high speed with the large-area uniformity of temperature distribution. It was found that a 0.5 mm-thick nickel mold can be heated from $25^{\circ}C$ to $150^{\circ}C$ within 1.5 seconds with the temperature variation of ${\pm}5^{\circ}C$ in 4-inch diameter area, using the induction heating apparatus.

  • PDF

Soft-Lithographic Fabrication of Ni Nanodots Using Self-Assembled Surface Micelles

  • Seo, Young-Soo;Lee, Jung-Soo;Lee, Kyung-Il;Kim, Tae-Wan
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.53-56
    • /
    • 2008
  • This study proposes a simple nano-patterning process for the fabrication of magnetic nanodot arrays on a large area substrate. Ni nanodots were fabricated on a large area (4 inches in diameter) Si substrate using the soft lithographic technique using self-assembled surface micelles of Polystyrene-block-Poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer formed at the air/water interface as a mask. The hexagonal array of micelles was successfully transferred to a Ni thin film on a Si substrate using the Langmuir-Blodgett technique. After ion-mill dry etching, a magnetic Ni nanodot array with a regular hexagon array structure was obtained. The Ni nanodot array showed in-plane easy axis magnetization and typical soft magnetic properties.

Fabrication of An Organic Thin-Film Transistor Array by Wettability Patterning for Liquid Crystal Displays

  • Kim, Sung-Jin;Bae, Jin-Hyuk;Ahn, Taek;Suh, Min-Chul;Chang, Seung-Wook;Mo, Yeon-Gon;Chung, Ho-Kyoon;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.151-154
    • /
    • 2007
  • We demonstrate a novel selective patterning process of a semiconducting polymer for channel regions to fabricate an array of organic thin-film transistors (OTFTs). This process is applicable for various organic films over large area. A reflective liquid crystal display based on the OTFT array was produced using the selective patterning through a wettability control.

  • PDF

4 Inch Wafer-Scale Replicability Enhancement in Hot Embossing by using PDMS-Cushioned Si Mold (PDMS 쿠션을 갖는 Si 몰드에 의한 핫엠보싱 공정에서의 4 인치 웨이퍼 스케일 전사성 향상)

  • Kim Heung-Kyu;Ko Young-Bae;Kang Jeong-Jin;Heo Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.178-184
    • /
    • 2006
  • Hot embossing is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, PDMS pad was used as a cushion on the backside of the micro-patterned 4 inch Si mold to improve the pattern fidelity over the 4 inch PMMA sheet by increasing the conformal contact between the Si mold and the PMMA sheet. The pattern replicability improvement over 4 inch wafer scale was evaluated by comparing the replicated pattern height and depth for PDMS-cushioned Si mold against the rigid Si mold without PDMS cushion.