• Title/Summary/Keyword: large amplitude vibration

Search Result 151, Processing Time 0.021 seconds

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

Design of Ultrasonic Vibration Device using PZT Actuator for Precision Laser Machining (압전구동기를 이용한 정밀 가공용 초음파 진동장치 설계)

  • Kim, W.J.;Fei, L.;Cho, S.H.;Park, J.K.;Lee, M.G.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2011
  • As the aged population grows around the world, many medical instruments and devices have been developed recently. Among the devices, a drug delivery stent is a medical device which requires precision machining. Conventional drug delivery stent has problems of residual polymer and decoating because the drug is coated on the surface of stent with the polymer. If the drug is impregnated in micro hole array on the surface of the stent, the problem can be solved. Micro sized holes are generally fabricated by laser machining; however, the fabricated holes do not have an enough aspect ratio to contain the drug or a good surface finish to deliver it to blood vessel tissue. To overcome these problems, we propose a vibration-assisted machining mechanism with PZT (Piezoelectric Transducers) for the fabrication of micro sized holes. If the mechanism vibrates the eyepiece of the laser machining head, the laser spot on the workpiece will vibrate vertically because objective lens in the eyepiece shakes by the mechanism's vibration. According to the former researches, the vibrating frequency over 20kHz and amplitude over 500nm are preferable. The vibration mechanism has cylindrical guide, hollowed PZT and supports. In the cylinder, the eyepiece is mounted. The cylindrical guide has upper and low plates and side wall. The shape of plates and side wall are designed to have high resonating frequency and large amplitude of motion. The PZT also is selected to have high actuating force and high speed of motion. The support has symmetrical and rigid characteristics.

  • PDF

Model Tests Study on Flow-induced Vibration of Truss Type Lift Gate (트러스형 리프트 게이트의 진동현상에 관한 모형실험)

  • Lee, Seong-Haeng;Kim, Ha-Jip;Park, Young-Jin;Hahm, Hyung-Gil;Kong, Bo-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.35-41
    • /
    • 2011
  • A model test is carried out to investigate the vibration of truss type lift gate in the four major rivers project. The gate model scaled with the ratio of 1 : 25 is made of acryl panel dimensioned 1.6 m in width, 0.28 m in height in the concrete test flume. Firstly natural frequencies of the model gate are measured and the results are compared with the numerical results in order to verify the model. The amplitudes of the vibration are measured under the different gate opening and water level conditions. The results are analyzed to study the characteristics of the gate vibration according to the small gate opening, the large gate opening and the overflow conditions. These test results presents a basic data for the guide manuals of gate management and a design method to reduce the gate vibration of truss type lift gate. Finally, the vibration of truss type lift gate are assessed in comparison with those of formerly tainter gate.

Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge

  • Hua, Xu G.;Chen, Zheng Q.;Lei, Xu;Wen, Qin;Niu, Hua W.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.683-693
    • /
    • 2019
  • In August 2012, during the passage of the typhoon Haikui (1211), large amplitude vibrations were observed on long hangers of the Xihoumen suspension Bridge, which destroyed a few viscoelastic dampers originally installed to connect a pair of hanger ropes transversely. The purpose of this study is to identify the cause of vibration and to develop countermeasures against vibration. Field measurements have been conducted in order to correlate the wind and vibration characteristics of hangers. Furthermore, a replica aeroelastic model of prototype hangers consisting of four parallel ropes was used to study the aeroelastic behavior of hanger ropes and to examine the effect of the rigid spacers on vibration mitigation. It is shown that the downstream hanger rope experiences the most violent elliptical vibration for certain wind direction, and the vibration is mainly attributed to wake interference of parallel hanger ropes. Based on wind tunnel tests and field validation, it is confirmed that four rigid spacers placed vertically at equal intervals are sufficient to suppress the wake-induced vibrations. Since the deployment of spacers on hangers, server hanger vibrations and clash of hanger ropes are never observed.

Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System (2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF

Nonlinear free vibration of FG-CNT reinforced composite plates

  • Mirzaei, Mostafa;Kiani, Yaser
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.381-390
    • /
    • 2017
  • Present paper deals with the large amplitude flexural vibration of carbon nanotube reinforced composite (CNTRC) plates. Distribution of CNTs as reinforcements may be uniform or functionally graded (FG). The equivalent material properties of the composite media are obtained according to a refined rule of mixtures which contains efficiency parameters. To account for the large deformations, von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity is included into the formulation. The matrix representation of the governing equations is obtained according to the Ritz method where the basic shape functions are written in terms of the Chebyshev polynomials. Time dependency of the problem is eliminated by means of the Galerkin method and the resulting nonlinear eigenvalue problem is solved employing a direct displacement control approach. Results are obtained for completely clamped and completely simply supported plates. Results are first validated for the especial cases of FG-CNTRC and cross-ply laminated plates. Afterwards, parametric studies are given for FG-CNTRC plates with different boundary conditions. It is shown that, nonlinear frequencies are highly dependent to the volume fraction and dispersion profiles of CNTs. Furthermore, mode redistribution is observed in both simply supported and clamped FG-CNTRC plates.

A SIMPLIFIED METHOD TO PREDICT FRETTING-WEAR DAMAGE IN DOUBLE $90^{\circ}$ U-BEND TUBES

  • Choi, Seog-Nam;Yoon, Ki-Seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.616-621
    • /
    • 2003
  • Fluid-elastic instability is believed to be a cause of the large-amplitude vibration and resulting rapid wear of heat exchanger tubes when the flow velocity exceeds a critical value. For sub-critical flow velocities, the random turbulence excitation is the main mechanism to be considered in predicting the long-term wear of steam generator tubes. Since flow-induced interactions of the tubes with tube supports in the sub-critical flow velocity can cause a localized tube wear, tube movement in the clearance between the tube and tube support as well as the normal contact force on the tubes by fluid should be maintained as low as possible. A simplified method is used for predicting fretting-wear damage of the double $90^{\circ}$U-bend tubes. The approach employed is based on the straight single-span tube analytical model proposed by Connors, the linear structural dynamic theory of Appendix N-1300 to ASME Section III and the Archard's equation for adhesive wear. Results from the presented method show a similar trend compared with the field data. This method can be utilized to predict the fretting-wear of the double $90^{\circ}$U-bend tubes in steam generators.

  • PDF

Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant (발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석)

  • Bae, Yong-Chae;Lee, Hyun;Kim, Yeon-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.