• Title/Summary/Keyword: large amplifier

Search Result 161, Processing Time 0.03 seconds

Novel Design of Ultrashort Pulse Excimer Laser Amplifier System II (Temporal Gain Control and Phase Distortion/ASE Characteristics)

  • Lee, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.228-232
    • /
    • 2003
  • The previous design work for very large final amplifier pumped by electron beam module was described from the point of view of energy characteristics. In this work, the design problems for phase front distortion, ASE, and gain control in large aperture amplifier are presented in detail.

A Discrete-Amplitude Pulse Width Modulation for a High-Efficiency Linear Power Amplifier

  • Jeon, Young-Sang;Nam, Sang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.679-688
    • /
    • 2011
  • A new discrete-amplitude pulse width modulation (DAPWM) scheme for a high-efficiency linear power amplifier is proposed. A radio frequency (RF) input signal is divided into an envelope and a phase modulated carrier. The low-frequency envelope is modulated so that it can be represented by a pulse whose area is proportional to its amplitude. The modulated pulse has at least two different pulse amplitude levels in order that the duty ratios of the pulse are kept large for small input. Then, an RF pulse train is generated by mixing the modulated envelope with the phase modulated carrier. The RF pulse train is amplified by a switching-mode power amplifier, and the original RF input signal is restored by a band pass filter. Because duty ratios of the RF pulse train are kept large in spite of a small input envelope, the DAPWM technique can reduce loss from harmonic components. Furthermore, it reduces filtering efforts required to suppress harmonic components. Simulations show that the overall efficiency of the pulsed power amplifier with DAPWM is about 60.3% for a mobile WiMax signal. This is approximately a 73% increase compared to a pulsed power amplifier with PWM.

A Low-Noise High Performance Amplifier for Low Input Signals (저입력신호를 위한 저잡음 고성능 증폭기)

  • 이대영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.4
    • /
    • pp.17-24
    • /
    • 1972
  • A simply constructed and inexpensive amplifier that exhibits unusually low noise is studied. The high-performance differential amplifier combines high input impedence, adjustable gain, low in put noise and low output impedance. The amplifier is particularly useful in applications which call for large amplificaions of very low level signals.

  • PDF

Novel Design of Ultrashort Pulse Excimer Laser Amplifier System I (Energy Characteristics)

  • Lee, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.39-43
    • /
    • 2003
  • The technology required to advance the state of the art of ultra-high-intensity excimer amplifier construction to the 100 J/100fs output pulse level is identified. The preliminary design work for very large final amplifier pumped by electron beam module is described, and key design problems and approaches are presented and discussed in detail based on the recent experimental and theoretical results.

New High-efficiency Power Amplifier System for High-directional Piezoelectric Transducer (고지향성 압전 트랜스듀서용 새로운 고효율 전력 증폭기)

  • Kim, Jin-Young;Kim, In-Dong;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.383-390
    • /
    • 2018
  • Piezoelectric micro-machined ultrasonic transducers for highly directional speaker need DC bias voltage. Most existing power amplifiers are not suitable for use in highly directional transducers because they are based on AC. In addition, since the piezoelectric micro-machined ultrasonic transducer has a large capacitive reactance, the power efficiency of the power amplifier is very low. Thus this paper proposes a new high efficiency power amplifier with DC bias voltage. In addition, by designing a matching circuit to compensate the capacitive reactance of the micro-machined ultrasonic transducer, the power efficiency of the power amplifier increases. The operating characteristics of the proposed power amplifier was verified by an experimental prototype. The proposed power amplifier is expected to be widely used in designing and implementing other related power amplifiers.

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.

The design of Fully Differential CMOS Operational Amplifier (Fully Differential CMOS 연산 증폭기 설계)

  • Ahn, In-Soo;Song, Seok-Ho;Choi, Tae-Sup;Yim, Tae-Soo;Sakong, Sug-Chin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.85-96
    • /
    • 2000
  • It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

  • PDF

Design of High-efficiency Power Amplifier System for High-directional Speaker (고지향성 스피커를 위한 새로운 전력 증폭기 설계)

  • Kim, Jin-Young;Kim, In-Dong;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1215-1221
    • /
    • 2017
  • Parametric array transducers are used for highly directional speaker in an air environments. Piezoelectric micromachined ultrasonic transducers for parametric array transducers need DC-biased voltage driving signals in order to get high-directional quality-sound features. The existing power amplifier such as class A amplifiers has low efficiency and require large volume heatsinks. To overcome the above-mentioned disadvantages of the conventional amplifier, this paper proposes a new power amplifier system. The proposed power amplifier system ensures high linearity of output characteristic by utilizing the push-pull class B type amplifier. Furthermore, the proposed power amplifier system gets high efficiency because it contains the DC-DC converter-type power supply which can perform energy recovery and envelope tracking function. Also the paper suggests the detailed circuit topology. Its characteristics are verified by the detailed experimental results.

The design of large-signal power amplifier using waveform analysis (파형 분석을 통한 대신호 전력증폭기의 설계)

  • 이승준;김병성;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1121-1133
    • /
    • 1998
  • In this paper, a new method is proposed for a simple andaccurate design of larage-sigal power amplifier using the output current- and volage- waveform analysis. An existing high-efficiency theory, Harmonic Loading, is modified to apply to a real device, and the notion of "actual bias point at large-signal input" is proposed. Based on the proposed theory, 2GHz band poweramplifier is implemented using HEMT device, and the implemented amplifier shows 14dBm output power, 46% drain efficienty, 38% power-added efficiency and 7.8dB gain at 2V bias voltage.

  • PDF

Novel Self-Reference Sense Amplifier for Spin-Transfer-Torque Magneto-Resistive Random Access Memory

  • Choi, Jun-Tae;Kil, Gyu-Hyun;Kim, Kyu-Beom;Song, Yun-Heub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • A novel self-reference sense amplifier with parallel reading during writing operation is proposed. Read access time is improved compared to conventional self-reference scheme with fast operation speed by reducing operation steps to 1 for read operation cycle using parallel reading scheme, while large sense margin competitive to conventional destructive scheme is obtained by using self-reference scheme. The simulation was performed using standard $0.18{\mu}m$ CMOS process. The proposed self-reference sense amplifier improved not only the operation speed of less than 20 ns which is comparable to non-destructive sense amplifier, but also sense margin over 150 mV which is larger than conventional sensing schemes. The proposed scheme is expected to be very helpful for engineers for developing MRAM technology.