• Title/Summary/Keyword: lap length

Search Result 155, Processing Time 0.032 seconds

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Behavior of Solid and Hollow Rectangular RC Piers with 50% of Lap-Spliced Longitudinal Bars (50%주철근 겹침이음을 갖는 중실 및 중공 사각단면 교각의 거동특성)

  • 김익현;이종석;이윤복;김원섭;선창호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.25-35
    • /
    • 2003
  • Scale model tests were performed to investigate the seismic behavior of the solid and hollow rectangular RC piers with 50% of lap-spliced longitudinal bars in plastic hinge regions. Continuous bars and lap-spliced ones with a lap length of 39 times the bar diameter were arranged alternately in the sections. In order to clarify the influence of lap splice on a ductility the effect of axial force and lateral confinement were excluded in the test. The typical flexural failure conducting a ductile behavior were observed in both models. It is confirmed that the 50% of lap-spliced bars can be considered as an alternative of seismic detailing for longitudinal bars.

Compression Splice Length in Concrete of 40 and 60 MPa Compressive Strengths (40, 60MPa 압축강도 콘크리트에서 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.571-572
    • /
    • 2009
  • Current design codes regarding compression lap splice dose not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of strength of concrete and transverse reinforcement. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens. Through two-variable non-linear regression analysis of measured splice strengths, a splice strength equation is derived, which is converted into a splice length equation.

  • PDF

Compression Lap Splice Length in Concrete of Compressive Strength from 40 to 70 MPa (40-70 MPa 콘크리트에서의 철근 압축이음 길이)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • A compression lap splice becomes an important issue due to development of ultra-high strength concrete. Current design codes regarding compression lap splice do not utilize merits of the improved strength of ultra-high strength concrete. Especially, a compression lap splice can be calculated longer than a tension lap splice according to the codes because they do not consider effects of compressive strength of concrete and transverse reinforcement. This anomaly confuses engineers in practice. Design equation is proposed for compression lap splice in 40 to 70 MPa of compressive strength of concrete. The proposed equation is based on 51 specimens conducted by authors. Basic form of the equation includes main parameters which are derived from investigating test results. Through two-variable non-linear regression analysis of measured splice strengths, a strength equation of compression lap splices is then derived. A specified splice strength is defined using a 5% fractile coefficient and a lap length equation is constructed. By the proposed equation, the anomaly of lap lengths in tension and compression is got rid of. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Flexural Behavior of Concrete Beams Reinforced with Lap Spliced FRP Bar (겹이음된 FRP 보강근으로 보강된 콘크리트 보의 휨거동)

  • Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.186-194
    • /
    • 2009
  • This is a part of the extensive ongoing investigation being carried out by author to develop appropriate design procedure of the concrete member reinforced with FRP rebars instead of conventional steel rebars. This study presents the experimental results of a research programme to assess the structural characteristics of spliced rebar in reinforced concrete members with FRP reinforcement. The test variables are the diameter of FRP rebar and the embedment length. The development length (ld) was calculated according to the ACI 440 for FRP rebars in concrete. A total of 14 concrete beams reinforced with spliced FRP rebars and 4 reference beams reinforced with non-spliced FRP rebars were tested. The effects of bar size (10, 13, 16 and 19 mm) and splice length (from 0.72 to 1.58ld) on the bond strength were empirically evaluated. The test results indicate that a modification factor of 1.3 and 1.6 is relatively sufficient for the bond development length of glass FRP rebars in order to achieve an adequate tension lap splice length.

Tension Lap Splice Length in High-Strength Concrete Flexural Members (고강도 콘크리트 휨부재의 인장 겹침이음길이에 관한 연구)

  • Lee, Gi-Yeol;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.753-761
    • /
    • 2009
  • This paper presents the test results of total 24 beam-end specimens to investigate the effect of high-strength concrete and cover thickness on the development resistance capacity in tensile lap splice length regions. Based on bond characteristics that an increase in concrete strength results in higher bond stress and shortening of the transfer length, cracking behavior that thin cover thickness induced a splitting crack easily and brittle crack propagation, current design code that development length provisions as uniform bond stress assumption was investigated apply as it. The results showed that as higher strength concrete was employed, not only development resistance capacity was influenced by cover thickness, but also more sufficient safety factor reserved shorter than the lap splice length provision in current design code. From experimental research results, high-strength concrete development length was not inverse ratio of $\sqrt{f_{ck}}$ but directly inverse of $f_{ck}$, and it is also said that there is a certain limit length of the embedded steel over which the assumption of uniform bond stress distribution is valid specially for high-strength concrete not having a same embed length such as normal-strength concrete in current design criteria hypothesis.

Design Equations of Compression Splice Strength and Length in Concrete of 100 MPa and Less Compressive Strength (100 MPa 이하 콘크리트의 철근 압축 이음 강도와 이음 길이 설계)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Although a compression splice length does not need to be longer than a tension splice length due to end bearing effect, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including concrete strength effect need to be found for economical design of ultra-high strength concrete. An experimental study has been conducted using column specimens with concrete strength of 80 and 100 MPa with transverse reinforcement. The test results showed that splice strengths improved when the amount of transverse reinforcement increased. However, end bearing strength did not increase when larger amount of transverse reinforcement is provided within the spliced zone. Therefore, the splice strength enhancement was attributed to the improvement of bond. From regression analysis of 94 test results including specimens made with concrete strength of 40 and 60 MPa, a new design equation is proposed for compression lap splice in the concrete compressive strength ranging from 40 to 100 MPa with transverse reinforcement. By using the proposed equation, the incorrect design equations for lap splice lengths in tension and compression can be corrected. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Estimations of the Adhesion Strength of Galvannealed Coatings on Coated Sheet Using Single Lap-Shear Test (단일겹치기이음시험을 이용한 합금화용융아연코팅강판의 코팅층 접합강도 평가)

  • Lee, Jung-Min;Lee, Chan-Joo;Ko, Dae-Cheol;Lee, Seon-Bong;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.560-567
    • /
    • 2009
  • This paper was designed to estimate the adhesion strength of galvannealed coatings on steel sheets. The adhesion strength were evaluated using single lap - shear tests where the lap joint was bonded by structural adhesive. Tests were performed for overlap length of 5mm, 10mm and 15 mm and three directions (0, 45, 90) of steel sheets used as the adherend of the overlap joint. After the tests, FE simulations of the single lap-shear test were also carried out to observe the stress distribution in the interface between the adhesive and the coated sheet. The results showed that the joint failure loads obtained from the tensile tests of bonded single lap-joints were the same, regardless of overlap lengths and directions of steel sheets. Also, the failure of galvannealed coatings greatly depended on shear stress distribution in the interface and the value was about 30MPa.

Effectiveness of R/C jacketing of substandard R/C columns with short lap splices

  • Kalogeropoulos, George I.;Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.273-292
    • /
    • 2014
  • The effectiveness of a retrofitting method for concrete columns with particular weaknesses is experimentally evaluated and presented in this paper. Structural deficiencies namely the inadequacy of transverse reinforcement and short length of lap splices are very common in columns found in structures built prior to the 1960s and 1970s. Recent earthquakes worldwide have caused severe damages and collapses of these structures. Nevertheless, the importance of improving the load transfer capacity between the deficiently lap-spliced bars is usually underestimated during the strengthening procedures applied in old buildings, though critical for the safety of the residents' lives. Thus, the seismic performance of the enhanced columns is frequently overestimated. The retrofitting approach presented herein involves reinforced concrete jacketing of the column sub-assemblages and welding of the lap-spliced bars to prevent the splice failure and conform to the provisions of modern design Codes. The cyclic lateral loading response of poorly confined original column specimens with insufficient lap splices and the seismic behavior of the retrofitted columns are compared. Test results clearly demonstrate that the retrofitting procedure followed is an effective way of significantly improving the seismic performance of substandard columns found in old buildings.

Friction Stir Spot Welding of AA5052 Aluminum Alloy and C11000 Copper Lap Joint

  • Prasomthong, Suriya;Sangsiri, Pradit;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.145-152
    • /
    • 2015
  • The article aims to apply a friction stir spot welding for producing the lap joint between AA5052 aluminum alloy and C11000 copper alloy. The dimension of the materials was 100 mm in length, 30 mm in width and 1.0 mm in thickness. The copper plate was set overlap the aluminum plate by 30 mm. The welding parameter was the rotating speed of 2500-4000 rpm, the pin inserting rate of 2-8 mm/min and the holding time of 6 sec. The mechanical properties test and the microstructure investigation were performed to evaluate the lap joint quality. The summarized results are as follows. The friction stir spot welding could produce effectively the lap joint between AA5052 and C11000 copper. Increase of the rotating speed and holding time directly affected to decrease the tensile shear strength of the lap joint. The optimized welding parameters in this study that indicated the tensile shear strength of 864 N was the rotating speed of 3500 rpm, the pin inserting rate of 6 mm/min and the holding time of 4sec. The experimental results also showed that the hardness of the weld metal was lower than that of the base materials.