• 제목/요약/키워드: language resources mapping

검색결과 8건 처리시간 0.024초

Automatic Mapping Between Large-Scale Heterogeneous Language Resources for NLP Applications: A Case of Sejong Semantic Classes and KorLexNoun for Korean

  • Park, Heum;Yoon, Ae-Sun
    • 한국언어정보학회지:언어와정보
    • /
    • 제15권2호
    • /
    • pp.23-45
    • /
    • 2011
  • This paper proposes a statistical-based linguistic methodology for automatic mapping between large-scale heterogeneous languages resources for NLP applications in general. As a particular case, it treats automatic mapping between two large-scale heterogeneous Korean language resources: Sejong Semantic Classes (SJSC) in the Sejong Electronic Dictionary (SJD) and nouns in KorLex. KorLex is a large-scale Korean WordNet, but it lacks syntactic information. SJD contains refined semantic-syntactic information, with semantic labels depending on SJSC, but the list of its entry words is much smaller than that of KorLex. The goal of our study is to build a rich language resource by integrating useful information within SJD into KorLex. In this paper, we use both linguistic and statistical methods for constructing an automatic mapping methodology. The linguistic aspect of the methodology focuses on the following three linguistic clues: monosemy/polysemy of word forms, instances (example words), and semantically related words. The statistical aspect of the methodology uses the three statistical formulae ${\chi}^2$, Mutual Information and Information Gain to obtain candidate synsets. Compared with the performance of manual mapping, the automatic mapping based on our proposed statistical linguistic methods shows good performance rates in terms of correctness, specifically giving recall 0.838, precision 0.718, and F1 0.774.

  • PDF

Ontology Mapping and Rule-Based Inference for Learning Resource Integration

  • Jetinai, Kotchakorn;Arch-int, Ngamnij;Arch-int, Somjit
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.97-105
    • /
    • 2016
  • With the increasing demand for interoperability among existing learning resource systems in order to enable the sharing of learning resources, such resources need to be annotated with ontologies that use different metadata standards. These different ontologies must be reconciled through ontology mediation, so as to cope with information heterogeneity problems, such as semantic and structural conflicts. In this paper, we propose an ontology-mapping technique using Semantic Web Rule Language (SWRL) to generate semantic mapping rules that integrate learning resources from different systems and that cope with semantic and structural conflicts. Reasoning rules are defined to support a semantic search for heterogeneous learning resources, which are deduced by rule-based inference. Experimental results demonstrate that the proposed approach enables the integration of learning resources originating from multiple sources and helps users to search across heterogeneous learning resource systems.

인간언어공학에의 활용을 위한 이종 개념체계 간 사상 - 세종의미부류와 KorLexNoun 1.5 - (Mapping Heterogenous Ontologies for the HLP Applications - Sejong Semantic Classes and KorLexNoun 1.5 -)

  • 배선미;임경업;윤애선
    • 인지과학
    • /
    • 제21권1호
    • /
    • pp.95-126
    • /
    • 2010
  • 본 연구에서는 인간언어공학에서의 활용을 위해 매우 이질적인 세종전자사전의 의미부류(SJSC)와 KorLexNoun 1.5(KLN)의 상위노드 간의 사상을 목표로, '의미 입자(sense grain)가 작은 개념체계(fine-grained ontology)' 간 귀납적이며 상향적인 수동 사상 방법론을 제안하였다. 동시에 이종 자원 간의 사상에 있어 각 의미체계의 이질성 때문에 발생하는 여러 가지 문제점을 살펴보고, 그 해결방안도 제안하였다. 두 이종 개념체계 간의 사상 방법은 SJSC의 단말 노드와 KLN의 Least Upper Bound(LUB)를 기본단위로 하여, 첫째, 어휘 분포를 이용하여 사상 후보군을 결정하고, 둘째, 계층 관계와 정의문과 용례를 이용하여 후보군들 간의 정확한 의미구분을 하며, 셋째, 상 하위-자매노드에 SJSC의 적정술어 및 정의문을 적용하여 LUB의 단계를 결정하고, 넷째, 양 의미체계의 계층관계를 비교함으로써 SJSC의 단말 노드와의 사상 여부를 판단하며, 마지막으로 KLN의 오류 및 전문용어 후보군은 사상에서 제외하였다. 이와같이 본 연구에서는 단계별 사상 준거의 설정에 있어 각 의미체계에 기술되어 있는 다양한 언어정보를 적극 이용하였는데, 이는 세밀한 수동 사상의 장점이라 할 수 있다. 본 연구에서 제안한 방법으로 사상한 결과, SJSC의 474개의 단말 및 비단말 노드와 KLN의 신셋(synset) 간에는 중복을 제외하고 6,487개의 LUB가 사상되었으며, 각 LUB의 하위노드를 포함해서는 모두 88,255개의 KLN 신셋이 사상되어 전체적으로는 97.91%가 사상되었다. 본 연구의 결과는 정교한 한국어 통사 및 의미 분석에 활용될 수 있을 것이다.

  • PDF

Information Strategy Planning for Digital Infrastructure Building with Geo-based Nonrenewable Resources Information in Korea: Conceptual Modeling Units

  • Chi, Kwang-Hoon;Yeon, Young-Kwang;Park, No-Wook;Lee, Ki-Won
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.191-196
    • /
    • 2002
  • From this year, KIGAM, one of Korean government-supported research institutes, has started new national program for digital geologic/natural resources infrastructure building. The goal of this program is to prepare digitally oriented infrastructure for practical digital database building, management, and public services of numerous types of paper maps related to geo-scientific resources or geologic thematic map sets: hydro-geologic map, applied geologic map, geo-chemical map, airborne radiometric/magnetic map, coal geologic map and off-shelf bathymetry map and so forth. As for digital infrastructure, several research issues in this topic are composed of: ISP (Information Strategy Planning), geo-framework modeling of each map set, pilot database building, cyber geo-mineral directory service system, and web based geologic information retrieval system upgrade which services Korean digital geologic maps scaled 1:50K. In this study, UML (Unified Modeling Language)-based data modeling of geo-data sets by and in KIGAM, among them, is mainly discussed, and its results are also presented in the viewpoint of digital geo-modeling ISP. It is expected this model is further progressed with the purpose of being a guidance or framework modeling for geologic thematic mapping and practical database building, as well as other types of national thematic map database building.

  • PDF

웹 온톨로지 구축을 위한 OWL 저작 시스템 (OWL Authoring System for building Web Ontology)

  • 이무훈;조현규;조현성;조성훈;장창복;최의인
    • 한국전자거래학회지
    • /
    • 제10권3호
    • /
    • pp.21-36
    • /
    • 2005
  • 현재의 웹 검색은 단순히 키워드매칭만을 통해 필요한 정보들을 검색하기 때문에 그 결과가 사용자가 원하는 정보와는 의미적으로 상이한 결과들을 많이 포함하고 있다. 사용자가 원하는 정보와 의미적으로 정확히 일치하는 정보들을 추출하기 위해서는 웹 자원에 대한 정확한 의미 부여와 웹 자원들 사이의 의미적 연관성을 기술할 수 있는 지식 표현 수단인 온톨로지가 필요하다. 웹 기술표준화 단체인 W3C에서는 이와 같은 웹 자원에 대한 의미 표현 기술로 OWL(Web Ontology Language)이라는 웹 온톨로지 언어를 발표하였으나 아직 이를 효과적으로 저작, 편집할 수 있는 전용 도구의 개발은 아직 미비한 실정이다. 따라서 본 논문은 OWL의 생성 및 편집을 효과적으로 제공할 수 있는 저작 시스템을 설계하고 구현하였다.

  • PDF

A Novel Framework for Defining and Submitting Workflows to Service-Oriented Systems

  • Bendoukha, Hayat;Slimani, Yahya;Benyettou, Abdelkader
    • Journal of Information Processing Systems
    • /
    • 제10권3호
    • /
    • pp.365-383
    • /
    • 2014
  • Service-oriented computing offers efficient solutions for executing complex applications in an acceptable amount of time. These solutions provide important computing and storage resources, but they are too difficult for individual users to handle. In fact, Service-oriented architectures are usually sophisticated in terms of design, specifications, and deployment. On the other hand, workflow management systems provide frameworks that help users to manage cooperative and interdependent processes in a convivial manner. In this paper, we propose a workflow-based approach to fully take advantage of new service-oriented architectures that take the users' skills and the internal complexity of their applications into account. To get to this point, we defined a novel framework named JASMIN, which is responsible for managing service-oriented workflows on distributed systems. JASMIN has two main components: unified modeling language (UML) to specify workflow models and business process execution language (BPEL) to generate and compose Web services. In order to cover both workflow and service concepts, we describe in this paper a refinement of UML activity diagrams and present a set of rules for mapping UML activity diagrams into BPEL specifications.

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.

국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구 (A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM))

  • 신우택;이진희;김정우;신동선;이영상;황승호
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-178
    • /
    • 2020
  • 국방부는 감소되는 부대 및 병력자원의 문제해결과 전투력 향상을 위해 4차 산업혁명 기술(빅데이터, AI)의 적극적인 도입을 추진하고 있다. 국방 정보시스템은 업무 영역 및 각군의 특수성에 맞춰 다양하게 개발되어 왔으며, 4차 산업혁명 기술을 적극 활용하기 위해서는 현재 폐쇄적으로 운용하고 있는 국방 데이터 관리체계의 개선이 필요하다. 그러나, 국방 빅데이터 및 인공지능 도입을 위해 전 정보시스템에 데이터 표준을 제정하여 활용하는 것은 보안문제, 각군 업무특성 및 대규모 체계의 표준화 어려움 등으로 제한사항이 있고, 현 국방 데이터 공유체계 제도적으로도 각 체계 상호간 연동 소요를 기반으로 체계간 연동합의를 통해 직접 연동을 통하여 데이터를 제한적으로 공유하고 있는 실정이다. 4차 산업혁명 기술을 적용한 스마트 국방을 구현하기 위해서는 국방 데이터를 공유하여 잘 활용할 수 있는 제도마련이 시급하고, 이를 기술적으로 뒷받침하기 위해 국방상호운용성 관리지침 규정에 따라 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 국방 데이터의 체계적인 표준 관리를 지원하는 다중 데이터 저장소 관리(MRMM) 기술개발이 필요하다. 본 연구에서는 스마트 국방 구현을 위해 가장 기본이 되는 국방 데이터의 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고, 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 다중 데이터 저장소 관리 (MRMM) 기술을 제시하고, 단어의 유사도를 통해 MRMM의 실현 방향성을 구현하였다. MRMM을 바탕으로 전군 DB의 표준화 통합을 좀 더 간편하게 하여 실효성 있는 국방 빅데이터 및 인공지능 데이터 구현환경을 제공하여, 스마트 국방 구현을 위한 막대한 국방예산 절감과 전투력 향상을 위한 전력화 소요기간의 감소를 기대할 수 있다.