• Title/Summary/Keyword: landslide prediction

Search Result 156, Processing Time 0.025 seconds

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Slope Failure Prediction through the Analysis of Surface Ground Deformation on Field Model Experiment (현장모형실험 기반 표층거동분석을 통한 사면붕괴 예측)

  • Park, Sung-Yong;Min, Yeon-Sik;Kang, Min-seo;Jung, Hee-Don;Sami, Ghazali-Flimban;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, one of the natural disasters, landslide is causing huge damage to people and properties. In order to minimize the damage caused by continuous landslide, a scientific management system is needed for technologies related to measurement and monitoring system. This study aims to establish a management system for landslide damage by prediction of slope failure. Ground behavior was predicted by surface ground deformation in case of slope failure, and the change in ground displacement was observed as slope surface. As a result, during the slope failure, the ground deformation has the collapse section, the after collapse precursor section, the acceleration section and the burst acceleration section. In all cases, increase in displacement with time was observed as a slope failure, and it is very important event of measurement and maintenance of risky slope. In the future, it can be used as basic data of slope management standard through continuous research. And it can contribute to reduction of landslide damage and activation of measurement industry.

The Development of Landslide Predictive System using Measurement Information based on u-IT (u-IT기반 계측정보를 이용한 급경사지붕괴 예측 시스템 개발)

  • Cheon, Dong-Jin;Park, Young-Jik;Lee, Seung-Ho;Kim, Jeong-Seop;Jung, Do-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5115-5122
    • /
    • 2013
  • This paper has studied about the development and application of landslide collapse prediction real-time monitoring system based on USN to detect and measure the collapse of landslide. The rainfall measuring sensor, gap water pressure sensor, indicator displacement measuring sensor, index inclination sensor, water content sensor and image analysis sensor are selected and these are applied on the test bed. Each sensor's operation and performance for reliability verification is tested by the instrument which is installed in the field. As the result, u-IT based real-time landslide monitoring system which is developed by this research for landslide collapse detection could minimize life and property damages because it makes advance evacuation with collapse risk pre-estimate through real-time monitoring on roadside cut and bedrock slopes. This system is based on the results of this study demonstrate the effect escarpment plan are spread throughout.

Effects of Uncertain Spatial Data Representation on Multi-source Data Fusion: A Case Study for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.393-404
    • /
    • 2005
  • As multi-source spatial data fusion mainly deal with various types of spatial data which are specific representations of real world with unequal reliability and incomplete knowledge, proper data representation and uncertainty analysis become more important. In relation to this problem, this paper presents and applies an advanced data representation methodology for different types of spatial data such as categorical and continuous data. To account for the uncertainties of both categorical data and continuous data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework are adopted, respectively. To investigate the effects of those data representation on final fusion results, a case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung, Korea. The case study results obtained from the proposed schemes were compared with the results obtained by traditional crisp boundary representation and categorized continuous data representation methods. From the case study results, the proposed scheme showed improved prediction rates than traditional methods and different representation setting resulted in the variation of prediction rates.

The Application of GIS for the Prediction of Landslide-Potential Areas (산사태의 발생가능지 예측을 위한 GIS의 적용)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Kim, Sung-Gil;Lee, Ho-Chan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.38-47
    • /
    • 2002
  • This paper demonstrates a regional analysis of landslide occurrence potential by applying geographic information system to the Kumi City selected as a pilot study area. The estimate criteria related to natural and humane environmental factors which affect landslides were first established. A slope map and a aspect map were extracted from DEM, which was generated from the contour layers of digital topographic maps, and a NDVI vegetation map and a land cover map were obtained through satellite image processing. After the spatial database was constructed, indexes of landslide occurrence potential were computed and then a few landslide-potential areas were extracted by an overlay method. It was ascertained that there are high landslide-potential at areas of about 30% incline, aspects including either south or east at least, adjacent to water areas or pointed end of the water system, in or near fault zones, covered with medium vegetable. For more synthetic and accurate analysis, soil data, forest data, underground water level data, meteorological data and so on should be added to the spatial database.

  • PDF

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.

Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis (데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석)

  • Sang-A Ahn;Jung-Hyun Lee;Hyuck-Jin Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.673-687
    • /
    • 2023
  • Exploratory data analysis is the process of observing and understanding data collected from various sources to identify their distributions and correlations through their structures and characterization. This process can be used to identify correlations among conditioning factors and select the most effective factors for analysis. This can help the assessment of landslide susceptibility, because landslides are usually triggered by multiple factors, and the impacts of these factors vary by region. This study compared two stages of exploratory data analysis to examine the impact of the data exploration procedure on the landslide prediction model's performance with respect to factor selection. Deep-learning-based landslide susceptibility analysis used either a combinations of selected factors or all 23 factors. During the data exploration phase, we used a Pearson correlation coefficient heat map and a histogram of random forest feature importance. We then assessed the accuracy of our deep-learning-based analysis of landslide susceptibility using a confusion matrix. Finally, a landslide susceptibility map was generated using the landslide susceptibility index derived from the proposed analysis. The analysis revealed that using all 23 factors resulted in low accuracy (55.90%), but using the 13 factors selected in one step of exploration improved the accuracy to 81.25%. This was further improved to 92.80% using only the nine conditioning factors selected during both steps of the data exploration. Therefore, exploratory data analysis selected the conditioning factors most suitable for landslide susceptibility analysis and thereby improving the performance of the analysis.

Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas (도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석)

  • Yoon, Sunkwon;Jang, Sangmin;Rhee, Jinyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

A Study on Analysis of Landslide Disaster Area using Cellular Automata: An Application to Umyeonsan, Seocho-Gu, Seoul, Korea (셀룰러 오토마타를 이용한 산사태 재난지역 분석에 관한 연구 - 서울특별시 서초구 우면산을 대상으로-)

  • Yoon, Dong-Hyeon;Koh, Jun-Hwan
    • Spatial Information Research
    • /
    • v.20 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • South Korea has many landslides caused by heavy rains during summer time recently and the landslides continue to cause damages in many places. These landslides occur repeatedly each year, and the frequency of landslides is expected to increase in the coming future due to dramatic global climate change. In Korea, 81.5% of the population is living in urban areas and about 1,055 million people are living in Seoul. In 2011, the landslide that occurred in Seocho-dong killed 18 people and about 9% of Seoul's area is under the same land conditions as Seocho-dong. Even the size of landslide occurred in a city is small, but it is more likely to cause a big disaster because of a greater population density in the city. So far, the effort has been made to identify landslide vulnerability and causes, but now, the new dem and arises for the prediction study about the areal extent of disaster area in case of landslides. In this study, the diffusion model of the landslide disaster area was established based on Cellular Automata(CA) to analyze the physical diffusion forms of landslide. This study compared the accuracy with the Seocho-dong landslide case, which occurred in July 2011, applying the SCIDDICA model and the CAESAR model. The SCIDDICA model involves the following variables, such as the movement rules and the topographical obstacles, and the CAESAR model is also applied to this process to simulate the changes of deposition and erosion.

Application of GIS-based Probabilistic Empirical and Parametric Models for Landslide Susceptibility Analysis (산사태 취약성 분석을 위한 GIS 기반 확률론적 추정 모델과 모수적 모델의 적용)

  • Park, No-Wook;Chi, Kwang-Hoon;Chung, Chang-Jo F.;Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • Traditional GIS-based probabilistic spatial data integration models for landslide susceptibility analysis have failed to provide the theoretical backgrounds and effective methods for integration of different types of spatial data such as categorical and continuous data. This paper applies two spatial data integration models including non-parametric empirical estimation and parametric predictive discriminant analysis models that can directly use the original continuous data within a likelihood ratio framework. Similarity rates and a prediction rate curve are computed to quantitatively compare those two models. To illustrate the proposed models, two case studies from the Jangheung and Boeun areas were carried out and analyzed. As a result of the Jangheung case study, two models showed similar prediction capabilities. On the other hand, in the Boeun area, the parametric predictive discriminant analysis model showed the better prediction capability than that from the non-parametric empirical estimation model. In conclusion, the proposed models could effectively integrate the continuous data for landslide susceptibility analysis and more case studies should be carried out to support the results from the case studies, since each model has a distinctive feature in continuous data representation.