• Title/Summary/Keyword: land-surface-model

Search Result 562, Processing Time 0.023 seconds

Estimation of sea surface wind using Radarsat-1 SAR (RADARSAT-1 SAR자료를 이용한 해상풍 추정)

  • Yoon, Hong-Joo;Cho, Han-Keun;Kang, Heung-Soon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.227-230
    • /
    • 2007
  • If we use the microwave of SAR, we can observe on the ocean in spite of bad weather, day and night time. Sea surface images on the ocean of SAR have a lot of information on the atmospheric phenomena related to surface wind vector. Information of wind speed which is extracted from SAR images is used variously. Wind direction data and sigma nought value are put in the CMOD which can extract wind information in order to estimate sea surface wind from SAR images. Wind spectrum which is extracted from SAR always presents opposed two points of $180^{\circ}$ because of applying to 2D-FFT. These ambiguities should be decided by position of land, wind direction or numerical model. Previously, we converted into sigma nought after extracting Digital Number from RadarSat-1 SAR using ENVI4.0, thus, it took a long time because every process was manual. Therefore, we converted sigma nought by matlab code after making matlab code. After that, we are extracting wind direction from sigma nought. Now, to decide wind direction needs further study because wind direction has $180^{\circ}$ ambiguity.

  • PDF

An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation (오픈소스 기반 다목적실용위성 3A호 영상자료의 지표면 반사도 영상 제작 실험)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1327-1339
    • /
    • 2019
  • Surface reflectance obtained by absolute atmospheric correction from satellite images is useful for scientific land applications and analysis ready data (ARD). For Landsat and Sentinel-2 images, many types of radiometric processing methods have been developed, and these images are supported by most commercial and open-source software. However, in the case of KOMPSAT 3/3A images, there are currently no tools or open source resources for obtaining the reflectance at the top-of-atmosphere (TOA) and top-of-canopy (TOC). In this study, the atmospheric correction module of KOMPSAT 3/3A images is newly implemented to the optical calibration algorithm supported in the Orfeo ToolBox (OTB), a remote sensing open-source tool. This module contains the sensor model and spectral response data of KOMPSAT 3A. Aerosol measurement properties, such as AERONET data, can be used to generate TOC reflectance image. Using this module, an experiment was conducted, and the reflection products for TOA and TOC with and without AERONET data were obtained. This approach can be used for building the ARD database for surface reflection by absolute atmospheric correction derived from KOMPSAT 3/3A satellite images.

Plant Hardiness Zone Mapping Based on a Combined Risk Analysis Using Dormancy Depth Index and Low Temperature Extremes - A Case Study with "Campbell Early" Grapevine - (최저기온과 휴면심도 기반의 동해위험도를 활용한 'Campbell Early' 포도의 내동성 지도 제작)

  • Chung, U-Ran;Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.121-131
    • /
    • 2008
  • This study was conducted to delineate temporal and spatial patterns of potential risk of cold injury by combining the short-term cold hardiness of Campbell Early grapevine and the IPCC projected climate winter season minimum temperature at a landscape scale. Gridded data sets of daily maximum and minimum temperature with a 270m cell spacing ("High Definition Digital Temperature Map", HD-DTM) were prepared for the current climatological normal year (1971-2000) based on observations at the 56 Korea Meteorological Administration (KMA) stations using a geospatial interpolation scheme for correcting land surface effects (e.g., land use, topography, and elevation). The same procedure was applied to the official temperature projection dataset covering South Korea (under the auspices of the IPCC-SRES A2 and A1B scenarios) for 2071-2100. The dormancy depth model was run with the gridded datasets to estimate the geographical pattern of any changes in the short-term cold hardiness of Campbell Early across South Korea for the current and future normal years (1971-2000 and 2071-2100). We combined this result with the projected mean annual minimum temperature for each period to obtain the potential risk of cold injury. Results showed that both the land areas with the normal cold-hardiness (-150 and below for dormancy depth) and those with the sub-threshold temperature for freezing damage ($-15^{\circ}C$ and below) will decrease in 2071-2100, reducing the freezing risk. Although more land area will encounter less risk in the future, the land area with higher risk (>70%) will expand from 14% at the current normal year to 23 (A1B) ${\sim}5%$ (A2) in the future. Our method can be applied to other deciduous fruit trees for delineating geographical shift of cold-hardiness zone under the projected climate change in the future, thereby providing valuable information for adaptation strategy in fruit industry.

A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration (한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리모수의 영향)

  • Jang, Ji-Hyeon;Hong, Jin-Kyu;Byun, Young-Hwa;Kwon, Hyo-Jung;Chae, Nam-Yi;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.107-121
    • /
    • 2010
  • We conducted a sensitivity test of Joint UK Land Environment Simulator (JULES), in which the influence of biophysical parameters on the simulation of gross primary productivity (GPP) and ecosystem respiration (RE) was investigated for two typical ecosystems in Korea. For this test, we employed the whole-year observation of eddy-covariance fluxes measured in 2006 at two KoFlux sites: (1) a deciduous forest in complex terrain in Gwangneung and (2) a farmland with heterogeneous mosaic patches in Haenam. Our analysis showed that the simulated GPP was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration for both ecosystems. RE was sensitive to wood biomass parameter for the deciduous forest in Gwangneung. For the mixed farmland in Haenam, however, RE was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration like the simulated GPP. For both sites, the JULES model overestimated both GPP and RE when the default values of input parameters were adopted. Considering the fact that the leaf nitrogen concentration observed at the deciduous forest site was only about 60% of its default value, the significant portion of the model's overestimation can be attributed to such a discrepancy in the input parameters. Our finding demonstrates that the abovementioned key biophysical parameters of the two ecosystems should be evaluated carefully prior to any simulation and interpretation of ecosystem carbon exchange in Korea.

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF

THE ROLE OF SATELLITE REMOTE SENSING TO DETECT AND ASSESS THE DAMAGE OF TSUNAMI DISASTER

  • Siripong, Absornsuda
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.827-830
    • /
    • 2006
  • The tsunami from the megathrust earthquake magnitude 9.3 on 26 December 2004 is the largest tsunami the world has known in over forty years. This tsunami destructively attacked 13 countries around Indian Ocean with at least 230,000 fatalities, displaced people 2,089,883 and 1.5 million people who lost their livelihoods. The ratio of women and children killed to men is 3 to 1. The total damage costs US$ 10.73 billion and rebuilding costs US$ 10.375 billion. The tsunami's death toll could have been drastically reduced, if the warning was disseminated quickly and effectively to the coastal dwellers along the Indian Ocean rim. With a warning system in Indian Ocean similar to that operating in the Pacific Ocean since 1965, it would have been possible to warn, evacuate and save countless lives. The best tribute we can pay to all who perished or suffered in this disaster is to heed its powerful lessons. UNESCO/IOC have put their tremendous effort on better disaster preparedness, functional early warning systems and realistic arrangements to cope with tsunami disaster. They organized ICG/IOTWS (Indian Ocean Tsunami Warning System) and the third of this meeting is held in Bali, Indonesia during $31^{st}$ July to $4^{th}$ August 2006. A US$ 53 million interim warning system using tidal gauges and undersea sensors is nearing completion in the Indian Ocean with the assistance from IOC. The tsunami warning depends strictly on an early detection of a tsunami (wave) perturbation in the ocean itself. It does not and cannot depend on seismological information alone. In the case of 26 December 2004 tsunami when the NOAA/PMEL DART (Deep-ocean Assessment and Reporting of Tsunami) system has not been deployed, the initialized input of sea surface perturbation for the MOST (Method Of Splitting Tsunami) model was from the tsunamigenic-earthquake source model. It is the first time that the satellite altimeters can detect the signal of tsunami wave in the Bay of Bengal and was used to validate the output from the MOST model in the deep ocean. In the case of Thailand, the inundation part of the MOST model was run from Sumatra 2004 for inundation mapping purposes. The medium and high resolution satellite data were used to assess the degree of the damage from Indian Ocean tsunami of 2004 with NDVI classification at 6 provinces on the Andaman seacoast of Thailand. With the tide-gauge station data, run-up surveys, bathymetry and coastal topography data and land-use classification from satellite imageries, we can use these information for coastal zone management on evacuation plan and construction code.

  • PDF

Retrospective analysis of the urban inundation and the impact assessment of the flood barrier using H12 model (H12 모형을 이용한 도시침수원인 및 침수방어벽의 효과 분석)

  • Kim, Bomi;Noh, Seong Jin;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.5
    • /
    • pp.345-356
    • /
    • 2022
  • A severe flooding occured at a small urban catchment in Daejeon-si South Korea on July 30, 2020 causing significant loss of property (inundated 78 vehicles and two apartments) and life (one casualty and 56 victims). In this study, a retrospective analysis of the inundation event was implemented using a physically-based urban flood model, H12 with high-resolution data. H12 is an integrated 1-dimensional sewer network and 2-dimensional surface flow model supported by hybrid parallel techniques to efficiently deal with high-resolution data. In addition, we evaluated the impact of the flooding barriers which were installed after the flood disaster. As a result, it was found that the inundation was affected by a combination of multiple components including the shape of the basin, the low terrain of the inundation area located in the downstream part of the basin, and lack of pipe capacity to drain discharge from the upstream during heavy rain. The impact of the flooding barriers was analyzed by modeling with and without barriers on the high-resolution terrain input data. It was evaluated that the flood barriers effectively lower the water depth in the apartment complex. This study demonstrates capability of high-resolution physically-based urban modeling to quantitatively assess the past inundation event and the impact of the reduction measures.

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

Spatial Interpolation of Hourly Air Temperature over Sloping Surfaces Based on a Solar Irradiance Correction (일사 수광량 보정에 의한 산악지대 매시기온의 공간내삽)

  • 정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.

Assessment of Flood Vulnerability to Climate Change Using Fuzzy Model and GIS in Seoul (퍼지모형과 GIS를 활용한 기후변화 홍수취약성 평가 - 서울시 사례를 중심으로 -)

  • Kang, Jung-Eun;Lee, Moung-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2012
  • The goal of this study is to apply the IPCC(Intergovernmental Panel on Climate Change) concept of vulnerability to climate change and verify the use of a combination of vulnerability index and fuzzy logic to flood vulnerability analysis and mapping in Seoul using GIS. In order to achieve this goal, this study identified indicators influencing floods based on literature review. We include indicators of exposure to climate(daily max rainfall, days of 80mm over), sensitivity(slope, geological, average DEM, impermeability layer, topography and drainage), and adaptive capacity(retarding basin and green-infra). Also, this research used fuzzy model for aggregating indicators, and utilized frequency ratio to decide fuzzy membership values. Results show that the number of days of precipitation above 80mm, the distance from river and impervious surface have comparatively strong influence on flood damage. Furthermore, when precipitation is over 269mm, areas with scare flood mitigation capacities, industrial land use, elevation of 16~20m, within 50m distance from rivers are quite vulnerable to floods. Yeongdeungpo-gu, Yongsan-gu, Mapo-gu include comparatively large vulnerable areas. This study improved previous flood vulnerability assessment methodology by adopting fuzzy model. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing flood mitigation policies.