• Title/Summary/Keyword: land surface condition

Search Result 186, Processing Time 0.021 seconds

Evaluation of the Impact of Land Surface Condition Changes on Soil Moisture Field Evolution (지표면 조건의 변화에 따른 토양수분의 변화 평가)

  • Yu, Cheol-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.795-806
    • /
    • 1998
  • Soil moisture is affected by regional climate, soil characteristics and land surface condition, etc,. Especially, the changes in land surface condition is more than other factors, which is mainly due to rapid urbanization and industrialization. This study is to evaluate how the change of land surface condition impacts on soil moisture field evolution using a simple model of soil moisture dynamics. For the quantification of soil moisture field, the first half of the paper is spared for the statistical characterization based on the first- and second-order statistics of Washita '92 and Monsoon '90 data. The second half is for evaluating the impact of land cover changes through simulation study using a model for soil moisture dynamics. The model parameters, the loss rate and the diffusion coefficient, have been estimated using the observed data statistics, where the changes of surface conditions are considered into the model by applying various parameter sets with different second-order statistics. This study is concentrated on evaluating the impact due to the changes of land surface condition variability. It is because we could easily quantify the impact of the changes of its areal mean based on the linear reservoir concept. As a result of the study, we found; (1)as the variability of land surface condition, increases, the soil moisture field dries up more easily, (2)as the variabilit y of the soil moisture field is the highest at the beginning of rainfall and decreases as time goes on to show the variability of land surface condition, (3)the diffusion effect due to surface runoff or water flow through the top soil layer is limited to a period of surface runoff and its overall impact is small compared to that of the loss rate field.

  • PDF

Comparative Study on the Seasonal Predictability Dependency of Boreal Winter 2m Temperature and Sea Surface Temperature on CGCM Initial Conditions (접합대순환모형의 초기조건 생산방법에 따른 북반구 겨울철 기온과 해수면 온도의 계절 예측성 비교 연구)

  • Ahn, Joong-Bae;Lee, Joonlee
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.353-366
    • /
    • 2015
  • The impact of land and ocean initial condition on coupled general circulation model seasonal predictability is assessed in this study. The CGCM used here is Pusan National University Couple General Circulation Model (PNU CGCM). The seasonal predictability of the surface air temperature and ocean potential temperature for boreal winter are evaluated with 4 different experiments which are combinations of 2 types of land initial conditions (AMI and CMI) and 2 types of ocean initial conditions (DA and noDA). EXP1 is the experiment using climatological land initial condition and ocean initial condition to which the data assimilation technique is not applied. EXP2 is same with EXP1 but used ocean data assimilation applied ocean initial condition. EXP3 is same with EXP1 but AMIP-type land initial condition is used for this experiment. EXP4 is the experiment using the AMIP-type land initial condition and data assimilated ocean initial condition. By comparing these 4 experiments, it is revealed that the impact of data assimilated ocean initial is dominant compared to AMIP-type land initial condition for seasonal predictability of CGCM. The spatial and temporal patterns of EXP2 and EXP4 to which the data assimilation technique is applied were improved compared to the others (EXP1 and EXP3) in boreal winter 2m temperature and sea surface temperature prediction.

Study on Heat Environment Changes in Seoul Metropolitan Area Using WRF-UCM: A Comparison between 2000 and 2009 (WRF-UCM을 활용한 수도권 지역의 열환경 변화 연구: 2000년과 2009년의 비교)

  • Lee, Bo-Ra;Lee, Dae-Geun;Nam, Kyung-Yeub;Lee, Yong-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.483-499
    • /
    • 2015
  • This study examined the impact of change of land-use and meteorological condition due to urbanization on heat environment in Seoul metropolitan area over a decade (2000 and 2009) using Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM). The numerical simulations consist of three sets: meteorological conditions of (1) October 2000 with land-use data in 2000 (base simulation), (2) October 2009 with land-use data in 2000 (meteorological condition change effect) and (3) October 2009 with land-use data in 2009 (both the effects of land-use and meteorological condition change). According to the experiment results, the change of land-use and meteorological condition by urbanization over a decade showed different contribution to the change of heat environment in Seoul metropolitan area. There was about $1^{\circ}C$ increase in near-surface (2 m) temperature over all of the analyzed stations due to meteorological condition change. In stations where the land-use type changed into urban, large temperature increase at nighttime was observed by combined effects of meteorological condition and land-use changes (maximum $4.23^{\circ}C$). Urban heat island (UHI) over $3^{\circ}C$ (temperature difference between Seoul and Okcheon) increased 5.24% due to the meteorological condition change and 26.61% due to the land-use change. That is, land-use change turned out to be contributing to the strengthening of UHI more than the meteorological condition change. Moreover, the land-use change plays a major role in the increase of sensible heat flux and decrease of latent heat flux.

A Study on The Effect of Anthropogenic Heat Flux and Land-Use on Thermal Environment in Pusan (인공열과 land-use가 부산시의 열적 환경에 미치는 영향 연구)

  • 김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.363-372
    • /
    • 2000
  • In order to overtake a quantitative analysis of effect of anthropogenic heat and different land-use on urban thermal environment numerical simulation of surface energy budget was carried out under typical summer synoptic condition. It is beneficial to understand surface temperature of complex urban surace. The different land-use types are classified of rice field farm fruit garden residential region forest water and swamp by using map scaled 1/25000 of Pusan metropolitan. The model predicts that maximum heat island intensity in the central part of Pusan is 7$^{\circ}C$ at 2000 LST in summertime. The surface temperature is propotional to the density of constructions. The effect of anthropogenic heat generation on surface temperature is the increase of 0.3$^{\circ}C$ at 1400LST in the central part of Pusan during summertime.

  • PDF

Analyzing off-line Noah land surface model spin-up behavior for initialization of global numerical weather prediction model (전지구수치예측모델의 토양수분 초기화를 위한 오프라인 Noah 지면모델 스핀업 특성분석)

  • Jun, Sanghee;Park, Jeong-Hyun;Boo, Kyung-On;Kang, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.181-191
    • /
    • 2020
  • In order to produce accurate initial condition of soil moisture for global Numerical Weather Prediction (NWP), spin-up experiment is carried out using Noah Land Surface Model (LSM). The model is run repeatedly through 10 years, under the atmospheric forcing condition of 2008-2017 until climatological land surface state is achieved. Spin-up time for the equilibrium condition of soil moisture exhibited large variability across Koppen-Geiger climate classification zone and soil layer. Top soil layer took the longgest time to equilibrate in polar region. From the second layer to the fourth layer, arid region equilibrated slower (7 years) than other regions. This result means that LSM reached to equilibrium condition within 10 year loop. Also, spin-up time indicated inverse correlation with near surface temperature and precipitation amount. Initialized from the equilibrium state, LSM was spun up to obtain land surface state in 2018. After 6 months from restarted run, LSM simulates soil moisture, skin temperature and evaportranspiration being similar land surface state in 2018. Based on the results, proposed LSM spin-up system could be used to produce proper initial soil moisture condition despite updates of physics or ancillaries for LSM coupled with NWP.

Impacts of the Land-sea Distribution around Korean Peninsula on the simulation of East Asia Summer Precipitation (동아시아 여름 강수 모의에 있어 한반도 주변 해륙분포가 미치는 영향)

  • Cha, Yu-Mi;Lee, Hyo-Shin;Kwon, Won-Tae;Boo, Kyung-On
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.241-253
    • /
    • 2007
  • This paper investigates summer precipitation change in East Asia according to switching surface boundary condition over South Korea and Shantung. Simulations are carried out by ECHO-G/S for 20 years (1980-1999). Surface condition over both areas in ECHO-G/S is represented by ocean (OCN experiment). In OCN experiment, the summer precipitation is considerably underestimated around the Korean peninsula (the dry region) and overestimated over the eastern Tibetan Plateau (the wet region). It may be related that the lack of the heat sources from the unrealistically prescribed land-sea mask weakens northward expansion of rainband and the development of convective precipitation. Moreover the simulated rainband retreats before June in connection with the early genesis of summer monsoon circulation. The systematic bias of the summer precipitation over the dry and wet regions are reduced comparing with the OCN experiment when the land-sea masks over South Korea and Shantung are realistically considered as land (LND experiment). These improvements can be explained by the thermodynamical dissimilarity between land and ocean. Enhanced warming by switching the areas from sea to land has led to develop the thermal low over Yellow Sea with the cyclonic circulation. Thus, this cyclonic circulation supports moistures from the south to the dry region and blocks to the wet region. The heat transport from the land surface to atmosphere plays a key role in the developing convective precipitation in local scale and maintaining the precipitation and the rainband. Therefore, this results indicate that the design of the realistic land-sea distribution is required for the accurate simulation of the regional precipitation.

Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field (지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션)

  • 홍정혜;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

A Study on Friction and Wear Behaviour of Undulated Surfaces (요철 표면의 마찰 및 마모 거동에 관한 연구)

  • Kwon, Wan-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 1997
  • The friction and wear behavior of undulated surfaces made of tin base babbit are examined experimentally at the low sliding speed with severe loading condition. Steel is used as counterface disk material under pin-on-disk type sliding condition. Undulated surfaces can improve the friction and wear properties under dry friction condition since undulated surfaces trap wear particles in their cavities and prohibit wear particles from agglomerating. However, under boundary lubrication condition, friction and wear properties of undulated surfaces are inferior to those of flat surfaces. It is shown that land width and the ratio of wear volume to cavity volume are the most important factors in friction behavior of undulated surfaces under dry friction condition, and there exists optimum land width minimizing friction and wear of undulated surfaces.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

Digital map arrangement of Hamamatsu City for the prediction and restoration of the earthquake disasters

  • Iwasaki Kazutaka;Mochizuki Emi;Ogawa Yoko;Abe Keiichi
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.17-20
    • /
    • 2004
  • The purpose of this study is to arrange the digital maps of Hamamatsu City and to construct the map information system to support the prediction and restoration of Tokai earthquake disasters. The authors arrange the land condition map and compute the populations of each land surface conditions and revealed that $37\%$ of the whole population lives in the safe land, but $63\%$ lives in the rather unsafe surface condition. The authors also arrange the digital map of the main lines of water supply pipe lines in corporation with the Hamamatsu City Water Supply Department and revealed the rather dangerous pipe line area in case of Tokai earthquake.

  • PDF