• Title/Summary/Keyword: land deformation

Search Result 106, Processing Time 0.032 seconds

Evaluation of Hot Mix Asphalt Properties using Complex Modifiers (복합개질제를 이용한 아스팔트 혼합물의 물성 평가)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.146-152
    • /
    • 2018
  • In this study, to improve the performance of asphalt mixtures for plastic deformation occurring mainly in Korea, complex modifiers were prepared by mixing powders and liquid type modifiers. The main constituents were powdery diatomaceous earth, mica and carbon black, and liquid type solid 70% SBR latex. The tensile strength ratios for the two asphalt mixtures used in the test were above 0.80 for the Ministry of Land Transportation (2017) asphalt mixture production and construction guidelines. The effects of increasing the tensile strength in the dry state was more than 14% when the composite modifier was added. The deformation rate per minute by the wheel tracking test load was an average of 0.07 to 0.147 for each mixture. The strain rate per minute was improved by the modifier, and the dynamic stability was improved by almost 100% from 295 to 590. In addition, the final settling was reduced from 11.38 mm to 9.57 mm. A plastic deformation test using the triaxial compression test showed that the amount of deformation entering the plastic deformation failure zone at the end of the second stage section and in the third stage plastic deformation section was 1.76 mm for the conventional mixture and 1.50 mm for the complex modifier mixture. The average slope of the complex modifier asphalt mixture mixed with the multi-functional modifier was 0.005 mm/sec. The plastic deformation rate is relatively small in the section where the road pavement exhibits stable common performance, i.e. the traffic load.

The Characteristics of Long-term Deformation Behavior During Tunnel Excavation in the Pyroclastic Rock (화산쇄설암 구간에서 터널 공사 중 장기변형거동 특성 연구)

  • Jang, Sukmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.23-28
    • /
    • 2022
  • In Korea, 70% of the land is mountainous and structures occupy a high proportion in railway and road construction. In particular, in recent years, the construction of high-speed railways and highways for high-speed driving is rapidly increasing. At the same time, the construction of tunnels is also increasing. The number of tunnel construction cases in which long-term deformation occurs after tunnel excavation is completed is increasing. The stability of these tunnel structures depends entirely on the characteristics of the rock surrounding the tunnel excavation. In the case of pyroclastic rock, which is the subject of this study, it is generally vulnerable to weathering and has a characteristic that its strength decreases over a long period of time. Tunnel design and construction planning considering the strength characteristics of pyroclastic rocks are essential. This study analyzed the cases of over-deformation that occurred at the tunnel site in the pyroclastic section. Based on this study, a plan for tunnel design and construction management in an area where pyroclastic rock exist in the future is presented.

Mechanistic Analysis of Pavement Damage and Performance Prediction Based on Finite Element Modeling with Viscoelasticity and Fracture of Mixtures

  • Rahmani, Mohammad;Kim, Yong-Rak;Park, Yong Boo;Jung, Jong Suk
    • Land and Housing Review
    • /
    • v.11 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • This study aims to explore a purely mechanistic pavement analysis approach where viscoelasticity and fracture of asphalt mixtures are considered to accurately predict deformation and damage behavior of flexible pavements. To do so, the viscoelastic and fracture properties of designated pavement materials are obtained through experiments and a fully mechanistic damage analysis is carried out using a finite element method (FEM). While modeling crack development can be done in various ways, this study uses the cohesive zone approach, which is a well-known fracture mechanics approach to efficiently model crack initiation and propagation. Different pavement configurations and traffic loads are considered based on three main functional classes of roads suggested by FHWA i.e., arterial, collector and local. For each road type, three different material combinations for asphalt concrete (AC) and base layers are considered to study damage behavior of pavement. A concept of the approach is presented and a case study where three different material combinations for AC and base layers are considered is exemplified to investigate progressive damage behavior of pavements when mixture properties and layer configurations were altered. Overall, it can be concluded that mechanistic pavement modeling attempted in this study could differentiate the performance of pavement sections due to varying design inputs. The promising results, although limited yet to be considered a fully practical method, infer that a few mixture tests can be integrated with the finite element modeling of the mixture tests and subsequent structural modeling of pavements to better design mixtures and pavements in a purely mechanistic manner.

Baseline Refinement for Topographic Phase Estimation using External DEM

  • Lee, Chang-Won;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.460-464
    • /
    • 2002
  • Multitemporal interferometric SAR has became an useful geodetic tool for monitoring Earth's surface deformation, generation of precise DEM, and land cover classification even though there still exist certain constraints such as temporal and spatial decorrelation effects, atmospheric artifacts and inaccurate orbit information. The Korea where nearly all areas are heavily vegetated, JERS-1 SAR has advantages in monitoring surface deformations and environmental changes in that it uses 4-times longer wavelength than ERS-l/2 or RADARSAT SAR system. For generating differential SAR interferogram and differential coherence image fer deformation mapping and temporal change detection, respectively, topographic phase removal process is required utilizing a reference inteferogram or external DEM simulation. Because the SAR antenna baseline parameter for JERS-1 is less accurate than those of ERS-l/2, one can not estimate topographic phases from an external DEM and the residual phase appears in differential interferogram. In this paper, we examined topographic phase retrieval method utilizing an external DEM. The baseline refinement is carried out by minimizing the differences between the measured unwrapped phase and the reference points of the DEM.

  • PDF

The incidence of abnormalities in the fire-bellied toad, Bombina orientalis, in relation to nearby human activity

  • Kang, Changku;Shin, Yujin;Kim, Ye Eun;Moon, Jongyeol;Kang, Jae Yeon;Jang, Yikweon
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.11-16
    • /
    • 2016
  • Declines in amphibian populations are occurring worldwide, and have been attributed to many factors, including anthropogenic environmental changes. One of the ramifications of such declines is abnormalities in many amphibian species. A strong association has been detected between human activities and abnormalities in amphibian populations, but studies on this association are largely focused on lentic species. In this study, it was analyzed whether the degree of local human activity was associated with the rate of abnormalities in Bombina orientalis which inhabited lotic environments. We found that the proportions of abnormalities in wild populations of B. orientalis increased, when i) the closest human land use was located within 100 m from the frogs' habitat, and ii) the proportion of human land use within a 300-m radius was high. Our findings suggest that human activity has a negative impact on the fitness of nearby amphibian populations, and that wild populations very close to human-induced disturbance are affected.

MOTION OF GLACIERS, SEA ICE, AND ICE SHELVES IN CANISTEO PENINSULA, WEST ANTARCTICA OBSERVED BY 4-PASS DIFFERENTIAL INTERFEROMETRIC SAR TECHNIQUE

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.414-417
    • /
    • 2008
  • We have extracted a surface deformation map of a part of Canisteo Peninsula on Amundsen Sea in West Antarctica by applying 4-pass DInSAR technique to two ERS-1/2 tandem pairs obtained on October 21-22, 1995 (diff-pair) and March 9-10, 1996 (topo-pair), and analyzed changes of glaciers, sea ice, ice shelves, and their kinematic interactions. We observed fast motion of glaciers pushing the adjoining sea ice. Some interferometric phases indicate the up-rise of sea ice of which type is thought to be land-fast ice to exert repulsive force against the pushing glacier. There were other glaciers and sea ice that moved to the same direction, suggesting that the sea ice in these regions was land-fast ice weakly harnessed to sea bottom or pack ice not harnessed at all. Several small circular fringes in ice shelves suggested that islands or seamounts on the bottom of ice shelves deterred the movement of ice shelves, resulting in the rise of ice surface.

  • PDF

An Experimental Study on the Relationship between Deformation and Relative Settlement for Weathered-granite (화강풍화토의 변형계수와 상대침하 관계식에 관한 실험적 연구)

  • Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.125-131
    • /
    • 2013
  • To predict the real bearing capacity and settlement of the shallow foundation the plate load test results were used. But there is no field estimation method about igneous weathered soil and rock. Therefore, to predict the settlement equation, the plate load test about igneous weathered soil and rock was done in this study. To analyze the load ~ relative settlement curve by normalization, it did not use normal analysis method, but the load ~ relative settlement (s/B, s : settlement, B : breadth of plate) was used. As a result of normalization by load ~ relative settlement conception, the curve was regular regardless of plate diameter and it was suggested the relationship of in-situ soil condition and results.

Modeling of coupled liquid-gas-solid three-phase processes due to fluid injection

  • Zang, Yong-Ge;Sun, Dong-Mei;Feng, Ping;Stephan, Semprich
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-23
    • /
    • 2017
  • A coupled liquid-gas-solid three-phase model, linking two numerical codes (TOUGH2/EOS3 and $FLAC^{3D}$), was firstly established and validated by simulating an in-situ air flow test in Essen. Then the coupled model was employed to investigate responses of multiphase flow and soil skeleton deformation to compressed air or freshwater injection using the same simulation conditions in an aquifer of Tianjin, China. The simulation results show that with injecting pressurized fluids, the vertical effective stress in some area decreases owing to the pore pressure increasing, an expansion of soil skeleton appears, and land uplift occurs due to support actions from lower deformed soils. After fluids injection stops, soil deformation decreases overall due to injecting fluids dissipating. With the same applied pressure, changes in multiphase flow and geo-mechanical deformation caused by compressed air injection are relatively greater than those by freshwater injection. Furthermore, the expansion of soil skeleton induced by compressed air injection transfers upward and laterally continuously with time, while during and after freshwater injection, this expansion reaches rapidly a quasi-steady state. These differences induced by two fluids injection are mainly because air could spread upward and laterally easily for its lower density and phase state transition appears for compressed air injection.

Monitoring Mount Sinabung in Indonesia Using Multi-Temporal InSAR

  • Lee, Chang-Wook;Lu, Zhong;Kim, Jin Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Sinabung volcano in Indonesia was formed due to the subduction between the Eurasian and Indo-Australian plates along the Pacific Ring of Fire. After being dormant for about 400 years, Sinabung volcano erupted on the 29th of August, 2010 and most recently on the 1st of November, 2016. We measured the deformation of Sinabung volcano using Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar(ALOS/PALSAR) interferometric synthetic aperture radar(InSAR) images acquired from February 2007 to January 2011. Based on multi-temporal InSAR processing, we mapped the ground surface deformation before, during, and after the 2010 eruption with time-series InSAR technique. During the 3 years before the 2010 eruption, the volcano inflated at an average rate of ~1.7 cm/yr with a markedly higher rate of 6.6 cm/yr during the 6 months prior to the 2010 eruption. The inflation was constrained to the top of the volcano. From the 2010 eruption to January 2011,the volcano subsided by approximately 3 cm (~6 cm/yr). We interpreted that the inflation was due to magma accumulation in a shallow reservoir beneath Sinabung. The deflation was attributed to magma withdrawal from the shallow reservoir during the eruption as well as thermo-elastic compaction of erupted material. This result demonstrates once again the utility of InSAR for volcano monitoring.

Topography, Vertical and Horizontal Deformation In the Sulzberger Ice Shelf, West Antarctica Using InSAR

  • Kwoun Oh-Ig;Baek Sangho;Lee Hyongki;Sohn Hong-Gyoo;Han Uk;Shum C. K.
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2005
  • We construct improved geocentric digital elevation model (DEM), estimate tidal dynamics and ice stream velocity over Sulzberger Ice Shelf, West Antarctica employing differential interferograms from 12 ERS tandem mission Synthetic Aperture Radar (SAR) images acquired in austral fall of 1996. Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry profiles acquired in the same season as the SAR scenes in 2004 are used as ground control points (GCPs) for Interferometric SAR (InSAR) DEM generation. 20 additional ICESat profiles acquired in 2003-2004 are then used to assess the accuracy of the DEM. The vertical accuracy of the OEM is estimated by comparing elevations with laser altimetry data from ICESat. The mean height difference between all ICESat data and DEM is -0.57m with a standard deviation of 5.88m. We demonstrate that ICESat elevations can be successfully used as GCPs to improve the accuracy of an InSAR derived DEM. In addition, the magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7cm and it agrees well within 3cm with predicted ones from tide models. Lastly, ice surface velocity is estimated by combining speckle matching technique and InSAR line-of-sight measurement. This study shows that the maximum speed and mean speed are 509 m/yr and 131 m/yr, respectively. Our results can be useful for the mass balance study in this area and sea level change.