• 제목/요약/키워드: laminate sequence

검색결과 81건 처리시간 0.028초

Optimal stacking sequence design of laminate composite structures using tabu embedded simulated annealing

  • Rama Mohan Rao, A.;Arvind, N.
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.239-268
    • /
    • 2007
  • This paper deals with optimal stacking sequence design of laminate composite structures. The stacking sequence optimisation of laminate composites is formulated as a combinatorial problem and is solved using Simulated Annealing (SA), an algorithm devised based on inspiration of physical process of annealing of solids. The combinatorial constraints are handled using a correction strategy. The SA algorithm is strengthened by embedding Tabu search in order to prevent recycling of recently visited solutions and the resulting algorithm is referred to as tabu embedded simulated Annealing (TSA) algorithm. Computational performance of the proposed TSA algorithm is enhanced through cache-fetch implementation. Numerical experiments have been conducted by considering rectangular composite panels and composite cylindrical shell with different ply numbers and orientations. Numerical studies indicate that the TSA algorithm is quite effective in providing practical designs for lay-up sequence optimisation of laminate composites. The effect of various neighbourhood search algorithms on the convergence characteristics of TSA algorithm is investigated. The sensitiveness of the proposed optimisation algorithm for various parameter settings in simulated annealing is explored through parametric studies. Later, the TSA algorithm is employed for multi-criteria optimisation of hybrid composite cylinders for simultaneously optimising cost as well as weight with constraint on buckling load. The two objectives are initially considered individually and later collectively to solve as a multi-criteria optimisation problem. Finally, the computational efficiency of the TSA based stacking sequence optimisation algorithm has been compared with the genetic algorithm and found to be superior in performance.

복합재료 적층판에 삽입된 광섬유 센서의 기계적 특성에 관한 연구 (A study on the mechanical behavior of the optical fiber sensors embedded in the composite laminate)

  • 신금철;이정주;권일범
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.440-447
    • /
    • 1999
  • 지능형 복합재료 구조물(Smart Composite Structures) 사용 시 부하되는 인장하중과 복합재료의 경화 시 발생하는 열하중은 복합재료 내에 삽입된 광섬유 센서의 기계적 거동에 직접적인 영향을 미친다. 게다가 복합재료의 적층 순서 및 코팅층의 유무에 따라 광섬유 센서 내의 웅력 분포는 달라지게 된다. 또한, 복합재료 적층판 내에서 발생된 균열은 적층판 전체의 파괴뿐만 아니라 광섬유 센서의 파괴에 큰 영향을 미치게 된다. 그러므로, 본 연구에서는 인장하중 및 열하중이 가해지는 복합재료 적층판 내에 삽입된 광섬유 센서의 응력분포를 유한요소해석을 통해 알아보고, 복합재료 적층판의 적층 순서에 따른 영향과 광섬유 센서에 코팅을 하였을 경우 광섬유 센서 내의 응력분포에 미치는 영향을 알아보았다. 또, 인장실험을 통하여 적층판 내에서 발생한 균열이 광섬유 센서의 파괴에 미치는 영향을 알아보았다.

  • PDF

섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동 (Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate)

  • 한경섭;남현욱;정성욱
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.960-968
    • /
    • 2002
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

최적 단면 치수를 가지는 복합재료 중공 빔의 설계 (Design of Cylindrical Composite Shell for Optimal Dimensions)

  • 최용진;전흥재;박혁성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.127-133
    • /
    • 2003
  • In this study, a problem formulation and solution for design optimization of laminate composite cylindrical beam section is presented. The objective of this research is to determine the optimal dimension of the laminated composite cylindrical beam sections which has the equivalent flexural rigidities to those of the steel cylindrical beam sections. The analytical model is based on the laminate theory and accounts for the material coupling for arbitrary laminate stacking sequence configuration. The outer diameter and thickness of the beam are design variables. The solutions described are found using a global search algorithm, Genetic Algorithms (GA).

  • PDF

섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동 (Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate)

  • 남현욱;김용환;정성욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.204-209
    • /
    • 2001
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

  • PDF

최적 적층구조를 위한 보강된 복합적층판의 좌굴강도 해석 (Buckling Strength Analysis of Stiffened Composite Plates for the Optimum Laminate Structure)

  • 김학률;이재욱
    • 대한조선학회지
    • /
    • 제26권3호
    • /
    • pp.21-28
    • /
    • 1989
  • 좌굴강도의 관점에서 보강된 복합적층판의 최적 적층 구조를 해석하였다. 복합적층판의 해석에서는 판두께 방향의 전단 변형 효과를 고려한 유한요소법이 적용되었고, 보강 평판의 모델은 판과 비임 요소로 구성되었으며 판의 적층 두께는 동일한 두께의 적층과 대칭으로 이루어졌다. 유리섬유의 방향을 변화시킴으로써 적층 두께의 최적구조를 얻었는데, $[-45^{\circ}/45^{\circ}/90^{\circ}/0^{\circ}]_3$을 갖는 적층판의 경우 가장 큰 좌굴하중을 얻었다. 이 경우 적층수는 8층 이상이었고, 특기할 사항은 같은 방향의 유리섬유층을 모두 함께 모아서 진술한 최적 적층의 구성에 따른 적층판이 가장 큰 좌굴 강도를 나타내었다.

  • PDF

Numerical study of bonded composite patch repair in damaged laminate composites

  • Azzeddine, Nacira;Benkheira, Ameur;Fekih, Sidi Mohamed;Belhouari, Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.151-168
    • /
    • 2020
  • The present study deals with the repair of composite structures by bonding composite patches. The composite structure is a carbon/epoxy laminate with stacking sequence [45/-45/0/90]S. The damaged zone is simulated by a central crack and repaired by bonding symmetrical composite patches. The repair is carried out using composite patches laminated from the same elemental folds as those of the cracked specimen. Three-dimensional finite element method is used to determine the energy release rate along the front of repaired crack. The effects of the repair technique used single or double patch, the stacking sequence of the cracked composite patch and the adhesive properties were highlighted on the variations of the fracture energy in mode I and mixed mode I + II loading.

철도차량 대차 적용 유리섬유/에폭시 4-매 주자직 적층 복합재의 인장-압축 피로특성 평가 연구 (A Study on the Evaluation of Tension-Compression Fatigue Characteristics of Glass Fiber/Epoxy 4-Harness Satin Woven Laminate Composite for the Railway Bogie Application)

  • 전광우;신광복;김정석
    • Composites Research
    • /
    • 제23권5호
    • /
    • pp.22-29
    • /
    • 2010
  • 본 논문은 철도차량 경량화 재질로 적용된 유리섬유/에폭시 4-매 주자직 적층 복합재료의 인장-압축 피로특성을 평가하였다. 유리섬유/에폭시 4-매 주자직 적층 복합재료의 인장-압축 피로시험은 경사, 위사 그리고 ${\pm}45^{\circ}$ 방향으로 적층된 시험편에 대하여 수행하였다. 인장-압축 피로시험은 5Hz의 주파수를 갖으며, 응력비(R)는 -1로 수행하였다. 인장-압축 피로시험 수행 시 압축하중에 의한 시험편의 좌굴을 방지하기 위하여 좌굴방지지그를 설계하고 이를 시험에 적용하였다. 또한, Goodman 선도는 유리섬유/에폭시 4-매 주자직 적층 복합재의 피로특성과 수명을 평가하기 위해 사용하였다. 유리섬유/에폭시 4-매 주자직 적층 복합재료의 인장-압축 피로시험결과 경사방향 적층 복합재의 피로특성이 기존 금속재 대차에 적용되는 SM490에 비하여 우수한 것으로 나타났다.

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • 제18권3호
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

탄소/에폭시 복합재판의 압축강도 두께효과에 대한 연구 (Thickness Effect on the Compressive Strength of T800/924C Carbon Fibre-Epoxy Laminates)

  • 공창덕;이정한
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.173-177
    • /
    • 2004
  • In this study, the effect of laminate thickness on the compressive behaviour of composite materials was investigated through systematic experimental work using the stacking sequences, [04]ns, [45/0/-45/90]ns and [45n/0n/-45n/90n]s (n = 2 to 8). The stacking sequence effects on failure strength of multidirectional laminates were examined. For this purpose, two different scaling techniques were used; (1) ply-level technique [45n/0n/-45n/90n]s and (2) sub laminate level technique [45/0/-45/90]ns. An apparent thickness effect existed in the lay-up with blocked plies, i.e. unidirectional specimens $([0_4]ns)$ and ply-level scaled multidirectional specimens ([45n/0n/-45n/90n]s). From the investigation of the stacking sequence effect, the strength values obtained from the sub laminate level scaled specimens were slightly higher than those obtained from the ply level scaled specimens. The measured failure strengths were compared with the predicted values

  • PDF