• Title/Summary/Keyword: laminar flow

Search Result 936, Processing Time 0.026 seconds

Regeneration of Cryopreserved Pear Shoot Tips Grown in Vitro by Encapsulation-Dehydration

  • Yi, JungYoon;Lee, YoungYi;Lee, GiAn;Son, EunHo;Park, HongJae
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.612-617
    • /
    • 2017
  • The preservation of pear germplasm, like that of other clonal germplasms, is difficult because it requires conservation of whole plants or their tissues. Among the currently available methods for long-term conservation of clonal germplasm, cryopreservation of shoot tips is the most reliable and cost- and space-effective option. Alginate-coated axillary shoot tips from in vitro-grown pear were conserved successfully in liquid nitrogen (LN) following dehydration. Shoot recovery from cryopreserved shoot tips was improved greatly after 8 weeks of cold acclimation, but recovery decreased slightly after then. The highest regeneration rate was observed when in vitro shoot tips were preincubated in MS (Murashige and Skoog) medium with 0.3 M sucrose for 48 h, and when alginate-coated shoot tips were precultured in MS medium with increasing sucrose concentrations (0.5 M and 0.7 M) for 8 and 16 h, respectively. When the encapsulated beads were dehydrated for up to 7 h [25% water content (fresh weight basis)] under laminar flow, the highest regeneration rate was observed in "BaeYun No. 3" (55.7%) and "Whanggeum" (43.3%) after warming from LN. This technique is useful as a practical procedure to cryopreserve plant material that is sensitive to freezing of the surrounding cryoprotectant medium. Therefore, this technique appears to be promising for the cryopreservation of shoot tips from in vitro-grown plantlets of pear germplasm.

Development of Numerical Model for Scour Analysis under Wave Loads in Front of an Impermeable Submerged Breakwater (불투과 잠제 전면에서 파랑 작용 하의 세굴 해석을 위한 수치모델의 개발)

  • Hur, Dong-Soo;Jeon, Ho-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.483-489
    • /
    • 2011
  • In this study, the coupled-numerical model has been newly developed to investigate numerically scouring and deposition around a coastal structure like a submerged breakwater using a numerical wave model and a lagrangian particle model for sand transport. As a numerical wave model, LES-WASS-2D (Hur and Choi, 2008) is adopted. The model is able to consider the flow through a porous midium with inertial, laminar and turbulent resistance term and determine the eddy viscosity with LES turbulence model. Distinct element method (Cundall and Strack, 1979), which is able to apply to many dynamical analysis of particulate media, as a lagrangian particle model for sand transport is newly coupled to the numerical wave model. The numerical simulation has been carried out to examine the scour problem in front of an impermeable submerged breakwater using the newly coupled-numerical model. The numerical results has been compared qualitatively with an existing experimental data and then its applicability has been discussed.

A Visual Investigation of Coherent Structure Behaviour Under Tone-Excited Laminar Non-Premixed Jet Flame (음향 가진된 층류 비예혼합 분류 화염에서 거대 와류 거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.275-285
    • /
    • 2003
  • A visualization study on the effect of forcing amplitude in tone-excited jet diffusion flames has been conducted. Visualization techniques are employed using optical schemes. which are a light scattering photography. Flame stability curve is attained according to Reynolds number and forcing amplitude at a fuel tube resonant frequency. Flame behavior is globally grouped into two from attached flame to blown-out flame according to forcing amplitude: one sticks the tradition flame behavior which has been observed in general jet diffusion flames and the other shows a variety of flame modes such as the flame of a feeble forcing amplitude where traditionally well-organized vortex motion evolves, a fat flame. an elongated flame. and an in-burning flame. Particular attention is focused on an elongation flame. which is associated with a turnabout phenomenon of vortex motion and on a reversal of the direction of vortex roll-up. It is found that the flame length with forcing amplitude is the direct outcome of the evolution process of the formed inner flow structure. Especially the negative part of the acoustic cycle under the influence of a strong negative pressure gradient causes the shapes of the fuel stem and fuel branch part and even the direction of vortex roll-up to dramatically change.

Half-turned Truncal Switch Operation for Transposition of Great Arteries, Ventricular Septal Defect and Pulmonic Stenosis (폐동맥 협착과 심실 중격 결손을 동반한 대혈관 전위에서 시행한 반회전 동맥간 전환술)

  • Lim Hong Gook;Hwang Seong Wook;Lee Cheul;Kim Chong Whan;Kim Jun Seok;Lee Chang-Ha
    • Journal of Chest Surgery
    • /
    • v.39 no.2 s.259
    • /
    • pp.145-149
    • /
    • 2006
  • The surgical management of patients with transposition of the great arteries, ventricular septal defect, and pulmonary stenosis remains a challenge. The Rastelli operation or Lecompte operation is the preferred surgical procedure, but its long-term results are not optimal because of a warped left ventricular outflow tract through a space-occupied intraventricular tunnel and a contrived right ventricular outflow tract. We performed a half-turned truncal switch operation as an alternative surgical procedure in a 3-year-old boy (weighing 9.6 kg) with this anomaly. Postoperative echocardiography showed laminar flow through straight and nonobstructive aortic and pulmonary ventricular outflow tracts.

Optimal Design of Clearance in Fuel Injection Pump (연료분사펌프의 최적 간극 설계)

  • Hong, Sung-Ho;Lee, Bora;Cho, Yongjoo;Park, Jong Kuk
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.148-156
    • /
    • 2015
  • In the study, a design process for ensuring optimal clearance in a fuel injection pump(FIP) is suggested. Structure analysis and hydrodynamic lubrication analysis are performed to determine the optimal clearance. The FIP is simulated using Hypermesh, Abaqus 6.12 to evaluate the reduction of clearance when the maximum supply pressure is applied. The reduction in clearance is caused by the difference in the deformations between the barrel and plunger. When the deformation of the plunger is larger than that of the barrel, a reduction in clearance at the head part occurs. On the other hand, the maximum clearance reduction equals the maximum deformation in the stem part, because the deformation of barrel does not occur in this region. The clearance of FIP should be designed to be larger than maximum reduction of clearance in order to avoid contact between the plunger and barrel. In addition, the two-dimensional Reynolds equation is used to evaluate lubrication characteristics with variations of viscosity, clearance and nozzle for a laminar, incompressible, unsteady state flow. The equation is discretized using the finite difference method. The lubrication characteristics of FIP are investigated by comparing film parameter, which is the ratio of the minimum film thickness and surface roughness. The optimal clearance of FIP is to be designed by considering the maximum reduction in clearance, lubrication characteristics, machining limits and tolerance of clearance.

Growth Characteristics and Hydrocarbon Patterns of Flammable Liquid on a Vinyl Layer (비닐장판 위에서 연소된 인화성 액체의 성장 특성과 탄화 패턴)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.15-21
    • /
    • 2018
  • This study examined the growth characteristics and carbonization pattern when a fire occurs due to a flammable liquid sprinkled on a vinyl floor. When acetone was sprinkled on a floor, the flame reached its peak in approximately 0.2 s after it was ignited. The lower part of the flame showed a laminar pattern while the upper part showed a turbulent pattern. The pattern showed a turbulent pattern and generated white smoke. The combustion completed floor surface showed carbonization of a dim pore pattern. In the case of benzene, an intense flame was formed in approximately 0.6 s after ignition. The flame length was measured to be approximately 50 mm. When the flame became weak, a significant amount of black smoke was generated due to incomplete combustion. The combustion completed floor surface showed carbonization of a pour pattern and splash pattern. In the case of alcohol, an intense flame was formed in approximately 1.1 s after ignition. In addition, the depth of carbonization was significant where the flammable liquid was collected and a trace of carbonization was observed at the boundary of the flow path of the flammable liquid.

Bioseparations in Lab-On-A-Chip (랩온어칩에서의 생물분리기술)

  • Chang Woo-Jin;Koo Yoon-Mo
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • Lab-on-a-chip is a miniaturized analytical device in which all of the procedures for the analysis of molecules are carried out, such as pretreatment, reaction, separation, detection, etc. Lab-on-a-chip has increasing concern as a device not only for rapid detection of molecules but also for high throughput screening and point of care, because conventional laborious and time consuming analytical procedures can be substituted. Thus, a lot of microfabrication and analytical techniques for lab-on-a-chip have been developed with microstructures smaller than a few hundreds of micrometers. Separation of the molecules is one of the most important components of lab-on-a-chip, because effective separation method can simplify the design and can provide better sensitivity. The electrokinetic separation based on capillary electrophoresis is most widely employed technique in lab-on-a-chip for the control of fluids and the separation of molecules. In this article, bioseparation techniques and its applications realized in lab-on-a-chip are reviewed.

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS

  • Ryu, Jae-Yong;Kim, Do-Hyong;Choi, Kum-Chan;Suh, Jeong-Min
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.217-231
    • /
    • 2006
  • The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.

Numeric Analysis of 2-Dimensional Nonlinear Viscous Free-Surface Wave Problems (점성을 고려한 2차원 비선형 자유표면파 문제의 수치해석)

  • Y.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.98-111
    • /
    • 1993
  • Two-dimensional nonlinear free-surface wave problems are analyzed with consideration of viscosity. Navier-Stokes equation and continuity equation are solved by the application of Finite Analytic Method, and MAC scheme is used far the treatment of free surface. Surface tension effect is also considered and laminar flow is assumed. The free-surface waves in shallow water, the flows around a vortex-pair with free surface and the wave ahead of a rectangular body are simulated to test the present numerical scheme. In the shallow water problem, viscous effect due to the friction on the bottom is observed. In the second problem, the approach of a vortex-pair to the free surface is simulated to examine the interaction of vortex-pair with the free surface. In the third problem, the wave ahead of a semi-infinite floating body is simulated.

  • PDF

Analysis of Stokes flows by Carrera unified formulation

  • Varello, Alberto;Pagani, Alfonso;Guarnera, Daniele;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.363-383
    • /
    • 2018
  • One-dimensional (1D) models of incompressible flows, can be of interest for many applications in which fast resolution times are demanded, such as fluid-structure interaction of flows in compliant pipes and hemodynamics. This work proposes a higher-order 1D theory for the flow-field analysis of incompressible, laminar, and viscous fluids in rigid pipes. This methodology is developed in the domain of the Carrera Unified Formulation (CUF), which was first employed in structural mechanics. In the framework of 1D modelling, CUF allows to express the primary variables (i.e., velocity and pressure fields in the case of incompressible flows) as arbitrary expansions of the generalized unknowns, which are functions of the 1D computational domain coordinate. As a consequence, the governing equations can be expressed in terms of fundamental nuclei, which are invariant of the theory approximation order. Several numerical examples are considered for validating this novel methodology, including simple Poiseuille flows in circular pipes and more complex velocity/pressure profiles of Stokes fluids into non-conventional computational domains. The attention is mainly focused on the use of hierarchical McLaurin polynomials as well as piece-wise nonlocal Lagrange expansions of the generalized unknowns across the pipe section. The preliminary results show the great advantages in terms of computational costs of the proposed method. Furthermore, they provide enough confidence for future extensions to more complex fluid-dynamics problems and fluid-structure interaction analysis.