Bioseparations in Lab-On-A-Chip

랩온어칩에서의 생물분리기술

  • Chang Woo-Jin (Department of Biological Engineering, Inha University) ;
  • Koo Yoon-Mo (Department of Biological Engineering, Inha University, Center for Advanced Bioseparation Technology, Inha University)
  • 장우진 (인하대학교 생물공학과) ;
  • 구윤모 (인하대학교 생물공학과, 초정밀생물분리기술연구센터)
  • Published : 2005.06.01

Abstract

Lab-on-a-chip is a miniaturized analytical device in which all of the procedures for the analysis of molecules are carried out, such as pretreatment, reaction, separation, detection, etc. Lab-on-a-chip has increasing concern as a device not only for rapid detection of molecules but also for high throughput screening and point of care, because conventional laborious and time consuming analytical procedures can be substituted. Thus, a lot of microfabrication and analytical techniques for lab-on-a-chip have been developed with microstructures smaller than a few hundreds of micrometers. Separation of the molecules is one of the most important components of lab-on-a-chip, because effective separation method can simplify the design and can provide better sensitivity. The electrokinetic separation based on capillary electrophoresis is most widely employed technique in lab-on-a-chip for the control of fluids and the separation of molecules. In this article, bioseparation techniques and its applications realized in lab-on-a-chip are reviewed.

이상 랩온어칩에서 사용된 생물분리 방법과 그 예를 소개하였다. 랩온어칩에서는 수백 마이크로미터 이하의 미세 채널을 사용하므로 유사한 크기의 채널을 사용하는 capillary electrophoresis에서 사용되었던 기법들이 가장 많이 활용되어왔으며, 랩온어칩 내에서 물질분리를 위한 기본 방법으로 적용되어왔다. 현재까지 CE에 사용되었던 기법들은 모두 랩온어칩 상에 구현된 바 있으며, 이러한 기술들은 랩온어칩의 활용 가능성 및 활용 분야 증대에 크게 기여하였다. 이외에도, laminar flow의 특성을 이용하거나, 막을 제작하거나, 추출 기법을 활용하는 등의 다양한 시도가 있었다. 그러나, high-throughput, 이동형 장비를 지향하는 랩온어칩에서 고전압을 사용하는 경우 활용에 제약을 가져올 수 있어, 용도에 맞는 적절한 분리기술의 개발 및 선택이 랩온어칩의 활용 가능성을 결정짓는 중요한 요인이 될 것으로 판단된다.

Keywords

References

  1. Manz, A., J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi and H. M. Widmer (1992), Planar chips technology for miniaturization and integration of separation techniques into monitoring systems : Capillary electrophoresis on a chip, J. of Chrom. A 593, 243-252 https://doi.org/10.1016/0021-9673(92)80292-3
  2. Harrison, D. J., A. Manz, Z. Fan, H. Luedi and H. M. Widmer (1992), Capillary electrophoresis and sample injection systems integrated on a planar glass chip, Anal. Chem. 64, 1920-1925 https://doi.org/10.1021/ac00041a029
  3. Hadd, A. G., D. E. Raymond, J. W. Halliwell, S. C. Jacobson and J. M. Ramsey (1997), Microchip device for performing enzyme assays, Anal. Chem. 69, 3407-3412 https://doi.org/10.1021/ac970192p
  4. Rodriguez, I., Y. Zhang, H. K. Lee and S. F. Y. Li (1997), Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G, J. of Chrom. A 781, 287-293 https://doi.org/10.1016/S0021-9673(97)00667-5
  5. Zholkovskij, E. K. and J. H. Masliyah (2004), Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer, Anal. Chem. 76, 2708-2718 https://doi.org/10.1021/ac0303160
  6. Bruin, G. J. M. (2000), Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis 21, 3931-3951 https://doi.org/10.1002/1522-2683(200012)21:18<3931::AID-ELPS3931>3.0.CO;2-M
  7. Guijt, R. M., E. Baltussen, G. van der Steen, H. Frank, H. Billiet, T. Schalkhammer, F. Laugere, M. Vellekoop, A. Berthold, L. Sarro and G. W. K. van Dedem (2001), Capillary electrophoresis with on-chip four-electrode capacitively coupled conductivity detection for application in bioanalysis, Electrophoresis 22, 2537-2541 https://doi.org/10.1002/1522-2683(200107)22:12<2537::AID-ELPS2537>3.0.CO;2-C
  8. Guenat, O. T., D. Ghiglione, W. E. Morf and N. F. de Rooij (2001), Partial electroosmotic pumping in complex capillary systems Part 2: Fabrication and application of a micro total analysis system (${\mu}$-TAS) suited for continuous volumetric nanotitrations, Sens. & Actuators B 72, 273-282 https://doi.org/10.1016/S0925-4005(00)00674-2
  9. Liu, Y., R. S. Foote, C. T. Culbertson, S. C. Jacobson, R. S. Ramsey and J. M. Ramsey (2000), Electrophoretic separation of proteins on microchips, J. Microcolumn Separations 12, 407-411 https://doi.org/10.1002/1520-667X(2000)12:7<407::AID-MCS4>3.0.CO;2-C
  10. Shultz-Lockyear, L. L., C. L. Colyer, Z. H. Fan, K. I. Roy and D. J. Harrison (1999), Effects of injector geometry and sample matrix on injection and sample loading in integrated capillary electrophoresis devices, Electrophoresis 20, 529-538 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<529::AID-ELPS529>3.0.CO;2-7
  11. Effenhauser, C. S., A. Manz and H. M. Widmer (1993), Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights, Anal. Chem. 65, 2637-2642 https://doi.org/10.1021/ac00067a015
  12. Harrison, D. J., K. Flurl, K. Seiler, Z. Fan, C. S. Effenhauser and A. Manz (1993), Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip, Science 261, 895-897 https://doi.org/10.1126/science.261.5123.895
  13. Jacobson, S. C., R. Hergenroder, L. B. Koutny, R. J. Warmack and J. M. Ramsey (1994), Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices, Anal. Chem. 66, 1107-1113 https://doi.org/10.1021/ac00079a028
  14. Jacobson, L. B. Koutny, S. C., R. Hergenroder, A. W. Moore, Jr., and J. M. Ramsey (1994), Microchip capillary electrophoresis with an integrated postcolumn reactor, Anal. Chem. 66, 3472-3476 https://doi.org/10.1021/ac00092a027
  15. Gai, H., L. Yu, Z. Dai, Y. Ma and B. Lin (2004), Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip, Electrophoresis 25, 1888-1894 https://doi.org/10.1002/elps.200305835
  16. Roddy, E. S., H. Xu and A. G. Ewing (2004), Sample introduction techniques for microfabricated separation devices, Electrophoresis 25, 229-242 https://doi.org/10.1002/elps.200305742
  17. Qian, S and H. H. Bau (2002), A chaotic electroosmotic stirrer, Anal. Chem. 74, 3616-3625 https://doi.org/10.1021/ac025601i
  18. Salimi-Moosavi, H., T. Tang and D. J. Harrison (1997), Electroosmotic pumping of organic solvents and reagents in microfabricated reactor chips, J. Am. Chem. Soc. 119, 8716-8717 https://doi.org/10.1021/ja971735f
  19. Seiler, K., D. J. Harrison and A. Manz (1993), Planar glass chips for capillary electrophoresis: Repetitive sample injection, quantitation, and separation efficiency, Anal. Chem. 65, 1481-1488 https://doi.org/10.1021/ac00058a029
  20. McDonald, J. C., D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller and G. M. Whitesides (2000), Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis 21, 27-40 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<27::AID-ELPS27>3.0.CO;2-C
  21. Hong, J. W., T. Fujii, M. Seki, T. Yamamoto and I. Endo (2001), Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip, Electrophoresis 22, 328-333 https://doi.org/10.1002/1522-2683(200101)22:2<328::AID-ELPS328>3.0.CO;2-C
  22. Chang, W.-J., D. Akin, M. Sedlak, M. R. Ladisch and R. Bashir (2003), Poly(dimethylsiloxane)(PDMS) and silicon hybrid biochip for bacterial culture, Biomed. Microdev. 5, 281-290 https://doi.org/10.1023/A:1027301628547
  23. Unger, M. A., H.-P. Chou, T. Thorsen, A. Scherer and S. R. Quake (2000), Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288, 113-116 https://doi.org/10.1126/science.288.5463.113
  24. Whitesides, G. M., E. Ostuni, S. Takayama, X. Jiang and D. E. Ingber (2001), Soft lithography in biology and biochemistry, Annu. Rev. Biomed Eng. 3, 335-373 https://doi.org/10.1146/annurev.bioeng.3.1.335
  25. Yamaguchi, A., P. Jin, H. Tsuchiyama, T. Masuda, K. Sun, S. Matsuo and H. Misawa (2002), Rapid fabrication of electrochemical enzyme sensor chip using polydimethylsiloxane microfluidic channel, Anal. Chim. Acta 468, 143-152 https://doi.org/10.1016/S0003-2670(02)00634-7
  26. Schmid, H. and B. Michel (2000), Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042-3049 https://doi.org/10.1021/ma982034l
  27. Park, N. and J. H. Hahn (2003), PDMS lab-on-a-chip, Chem. World 43, 37-41
  28. Ren, X., M. Bachman, C. Sims, G.P. Li and N. Allbritton (2001), Electroosmotic properties of microfluidic chamels composed of poly(dimethylsiloxane), J. Chrom. B 762, 117-125 https://doi.org/10.1016/S0378-4347(01)00327-9
  29. Badal, M. Y., M. Wong, N. Chiem, H. Salimi-Moosave and D. J. Harrison (2002), Protein separation and surfactant control of electroosmotic flow in poly(dimethylsiloxane)-coated capillaries and microchips, J. Chrom. A 947, 277-286 https://doi.org/10.1016/S0021-9673(01)01601-6
  30. Sui, Z. and J. B. Schlenoff (2003), Controlling electroosmotic flow in microchannels with pH-responsive polyelectrolyte multilayers, Langmuir 19, 7829-7831 https://doi.org/10.1021/la034682q
  31. Weston, A. and P. R. Brown (1997), HPLC and CE, p134, Academic Press, San Diego
  32. Li, S. F. Y. (1992), Capillary electrophoresis, p1, Elsevier Science Publishers, Amsterdam
  33. Jandik, P. and G. Bonn (1993), Capillary electrophoresis of small molecules and ions, p37, VCH Publishers, Inc., New York
  34. Zhang, B., F. Foret and B. L. Karger (2000), A microdevice with integrated liquid junction for facile peptide and protein analysis by capillary electrophoresis/electrospray mass spectrometry, Anal. Chem. 72, 1015-1022 https://doi.org/10.1021/ac991150z
  35. Qiu, H., J. Yan, X. Sun, J. Liu, W. Cao, X. Yang and E. Wang (2003), Microchip capillary electrophoresis with and integrated indium tin oxide electrode-based electrochemiluminescence detector, Anal. Chem. 75, 5435-5440 https://doi.org/10.1021/ac034500x
  36. Wang, J., G. Chen, M. P. Chatrathi and M. Musameh (2004), Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector, Anal. Chem. 76, 298-302 https://doi.org/10.1021/ac035130f
  37. Lee, H. -L and S. -C. Chen (2004), Microchip capillary electrophoresis with amperometric detection for several carbohydrates, Talanta 64, 210-216 https://doi.org/10.1016/j.talanta.2004.02.013
  38. Guihen, E. and J. D. Glennon (2005), Rapid separation of antimicrobial metabolites by microchip electrophoresis with UV linear imaging detection, J. Chrom. A 1071, 223-228 https://doi.org/10.1016/j.chroma.2004.12.031
  39. Stettler, A. R. and M. A. Schwarz (2005), Affinity capillary electrophoresis on microchips, J. Chrom. A 1063, 217-225 https://doi.org/10.1016/j.chroma.2004.11.079
  40. Cho, S. I., J. Shim, M.-S. Kim, Y.-K. Kim and D. S. Chung (2004), On-line sample cleanup and chital separation of gemifloxacin in a urinary solution using chital crown ether as a chital selector in microchip electrophoresis, J. Chrom. A 1055, 241-245 https://doi.org/10.1016/j.chroma.2004.08.124
  41. Terabe, S., K. Otsuka and T. Ando (1985), Electrokinetic chromatography with micellar solution and open-tubular capillary, Anal. Chem. 57, 834-841 https://doi.org/10.1021/ac00281a014
  42. Mwongela, S. M., A. Numan, N. L. Gill, R. A. Agbaria and I. M. Warner (2003), Separation of achital and chital analytes using polymeric surfactants with ionic liquids as modifiers in micellar electrokinetic chromatography, Anal. Chem. 75, 6089-6096 https://doi.org/10.1021/ac034386i
  43. Kim, J.-B. and S. Terabe (2003), On-line sample preconcentration techniques in micellar electrokinetic chromatography, J. Parm. & Biomed. Anal. 30, 1625-1643 https://doi.org/10.1016/S0731-7085(02)00509-5
  44. Lin, S., A. S. Fischl, X. Bi and W. Parce (2003), Separation of phospholipids in microfluidic chip device: Application to high-throughput screening assays for lipid-modifying enzymes, Anal. Biochem. 314, 97-107 https://doi.org/10.1016/S0003-2697(02)00616-4
  45. Collins, G. E. and Q. Lu (2001), Radionuclide and metal ion detection on a capillary electrophoresis microchip using LED absorbance detection, Sens. & Act. B 76, 244-249 https://doi.org/10.1016/S0925-4005(01)00575-5
  46. Schure, M. R., R. E. Murphy, W. L. Klotz and W. Lau (1998), High-performance capillary gel electrochromatography with replaceable media, Anal. Chem. 70, 4985-4995 https://doi.org/10.1021/ac980719d
  47. Petersen, J. R., A. O. Okorodudu, A. Mohammad and D. A. Payne (2003), Capillary electrophoresis and its application in the clinical laboratory, Clinica Chimica Acta 330, 1-30 https://doi.org/10.1016/S0009-8981(03)00006-8
  48. Zhu, L., W. J. Stryjewski and S. A. Soper (2004), Multiplexed fluorescence detection in microfabricated devices with both time-resolved and spectral-discrimination capabilities using near-infrared fluorescence, Anal. Biochem. 330, 206-218 https://doi.org/10.1016/j.ab.2004.03.047
  49. Ehrlich, D. J. and P. Matsudaira (1999), Microfluidic devices for DNA analysis, Tr. Biotechnol. 17, 315-319
  50. Kim, D.-K. and S. H. Kang (2005), On-channel base stacking in microchip capillary gel electrophoresis for high-sensitivity DNA fragment analysis, J. Chrom. A 1064, 121-127 https://doi.org/10.1016/j.chroma.2004.12.045
  51. Mizukami, Y., D. Rajniak, A. Rajniak and M. Nishimura (2002), A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array, Sens. & Act. B 81, 202-209 https://doi.org/10.1016/S0925-4005(01)00953-4
  52. Bartle, K. D. and P. Myers (2001), Theory of capillary electrochromatography, J. Chrom. A. 916, 3-23 https://doi.org/10.1016/S0021-9673(01)00709-9
  53. Colon, L. A., G. Burgos, T. D. Maloney, J. M. Cintron and R. L. Rodriguez (2000), Recent progress in capillary electrochromatography, Electrophoresis 21, 3965-3993 https://doi.org/10.1002/1522-2683(200012)21:18<3965::AID-ELPS3965>3.0.CO;2-T
  54. Vanhoenacker, G., T. V. den Bosch, G. Rozing and P. Sandra (2001), Recent applications of capillary electrochromatography, Electrophoresis 22, 4064-4103 https://doi.org/10.1002/1522-2683(200111)22:19<4064::AID-ELPS4064>3.0.CO;2-9
  55. Zhang, X. and S. Huang (2001), Single step on-column frit making for capillary high-performance liquid chromatography using sol-gel technology, J. Chrom. A 910, 13-18 https://doi.org/10.1016/S0021-9673(00)01184-5
  56. Ro, K. W., W.-J. Chang, H. Kim, Y.-M. Koo and J. H. Hahn (2003), Capillary electrochromatography and preconcentration of neutral compounds on poly(dimethylsiloxane) microchips, Electrophoresis 24, 3253-3259 https://doi.org/10.1002/elps.200305568
  57. Van den Bosch, S.E., S. Heemstra, J.C. Kraak and H. Poppe (1996), Experiences with packed capillary electrochromatography at ambient pressure, J. Chrom. A 755, 165-177 https://doi.org/10.1016/S0021-9673(96)00612-7
  58. Chirica, G. S. and V. T. Remcho (2000), A simple procedure for the preparation of fritless colunms by entrapping conventional high performance liquid chromatography sorbents, Electrophoresis 21, 3093-3101 https://doi.org/10.1002/1522-2683(20000901)21:15<3093::AID-ELPS3093>3.0.CO;2-D
  59. Svec, F., E. C. Peters, D. Sykora and J. M. J. Frechet (2000), Design of the monolithic polymers used in capillary electrochromatography columns, J. Chrom. A 887, 3-29 https://doi.org/10.1016/S0021-9673(99)01232-7
  60. Dulay, M. T., R. P. Kulkami and R. N. Zare (1998), Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles, Anal. Chem. 70, 5103-5107 https://doi.org/10.1021/ac9806456
  61. Fintschenko, Y., W.-Y. Choi, S. M. Ngola and T. J. Shepodd (2001), Chip eleclrochromatography of polycyclic aromatic hydrocarbons on an acrylate-based UV-initiated porous polymer monolith, Fresenius J. Anal. Chem. 371, 174-181 https://doi.org/10.1007/s002160100948
  62. Kawamura, K., K. Otsuka and S. Terabe (2001), Capillary electrochromatographic enantioseparations using a packed capillary with a 3 ${\mu}m$ OD-type chiral packing, J. Chrom. A 924, 251-257 https://doi.org/10.1016/S0021-9673(01)00902-5
  63. Slentz, B. E., N. A. Penner and F. E. Regnier (2002), Capillary electrochromatography of peptides on microfabricated poly (dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization, J. Chrom. A 948, 225-233 https://doi.org/10.1016/S0021-9673(01)01319-X
  64. Zhang, W., L. Zhang, G. Ping, Y. Zhang and A. Kettrup (2001), Migration of neutral solutes by double stepwise gradient elution in capillary electrochromatography, J. Chrom. A 922, 277-282 https://doi.org/10.1016/S0021-9673(01)00876-7
  65. Pusecker, K., J. Schewitz, P. Gfrorer, L.-H. Tseng, K. Albert and E. Bayer (1998), On-line coupling of capillary electrochromatography, capillary electrophoresis, and capillary HPLC with nuclear magnetic resonance spectroscopy, Anal. Chem. 70, 3280-3285 https://doi.org/10.1021/ac980063o
  66. Ding, J. and P. Vouros (1997), Capillary electrochromatography and capillary electrochromatography-mass spectrometry for the analysis of DNA adduct mixtures, Anal. Chem. 69, 379-384 https://doi.org/10.1021/ac9606968
  67. Thormann, W., J. Caslavska, S. Molteni and J. Chmelik (1992), Capillary isoelectric focusing with electroosmotic zone displacement and on-column multichannel detection, J. Chrom. A 589, 321-327 https://doi.org/10.1016/0021-9673(92)80039-W
  68. Mao, Q. and J. Pawliszyn (1999), Demonstration of isoelectric focusing on an etched quartz chip with UV absorption imaging detection, Analyst 124, 637-641 https://doi.org/10.1039/a809756i
  69. Raisi, F., P. Belgrader, D. A. Borkholder, A. E. Herr, G. J. kiritz, F. Pourhamadi, M. T. Tayler and M. A. Northrup (2001), Microchip isoelectric focusing using a miniature scanning detection system, Electrophoresis 22, 2291-2295 https://doi.org/10.1002/1522-2683(20017)22:11<2291::AID-ELPS2291>3.0.CO;2-A
  70. Wen, J., Y. Lin, F. Xiang, D. W. Matson, H. R. Udseth and R. D. Smith (2000), Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry, Electrophoresis 21, 191-197 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<191::AID-ELPS191>3.0.CO;2-M
  71. Herr, A. E., J. I. Molho, K. A. Drouvalakis, J. C. Mikkelsen, P. J. Utz, J. G. Santiago and T. W. Kenny (2003), On-chip coupling of isoelectric focusing and free solution electrophoresis for multidimensional separations, Anal. Chem. 75, 1180-1187 https://doi.org/10.1021/ac026239a
  72. Li, Y., J. S. Buch, F. Rosenberger, D. L. DeVoe and C. S. Lee (2004), Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfluidic network, Anal. Chem. 76, 742-748 https://doi.org/10.1021/ac034765b
  73. Hofmann, O., D. Che, K. A. Cruickshank and U. R. Muller (1999), Adaptation of capillary isoelectric focusing to microchannels on a glass chip, Anal. Chem. 71, 678-686 https://doi.org/10.1021/ac9806660
  74. Grossman, P. D. and J. C. Colburn (1992), Capillary electrophoresis, p320, Academic Press Inc., California
  75. Prest, J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard and B. J. T. Brown (2003), Determination of inorganic selenium species by miniaturised isotachophoresis on a planar polymer chip, Anal. Bioanal. Chem. 376, 78-84
  76. Wainright, A., S. J. Williams, G. Ciambrone, Q. Xue, J. Wei and D. Harris (2002), Sample pre-concentration by isotachophoresis in microfluidic devices, J. Chrom. A 979, 69-80 https://doi.org/10.1016/S0021-9673(02)01246-3
  77. Kvasnicka, F., M. Jaros and B. Gas (2001), New configuration in capillary isotachophoresis-capillary zone electrophoresis coupling, J. Chrom. A 916, 131-142 https://doi.org/10.1016/S0021-9673(01)00616-1
  78. Baldock, S.J., P.R. Fielden, N.J. Goddard, H.R. Kretschmer, J.E. Prest and B.J. Treves Brown (2004), Novel variable volume injector for performing sample introduction in a miniaturised isotachophoresis device, J. Chrom. A 1042, 188-188
  79. Grasz, B., A. Neyer, M. Johnck, D. Siepe, F. Eisenbeisz, G. Weber and R. Hergenroder (2001), A new PMMA-microchip device for isotachophoresis with integrated conductivity detector, Sens. & Act. B 72, 249-258 https://doi.org/10.1016/S0925-4005(00)00643-2
  80. Masar, M., M. Zuborova, J. Bielcikova, D. Kaniansky, M. Johnck and B. StanisIawski (2001), Conductivity detection and quantitation of isotachophoretic analytes on a planar chip with on-line coupled separation channels, J. Chrom. A 916, 101-111 https://doi.org/10.1016/S0021-9673(00)01236-X
  81. Jeong, Y., K. Choi, M. K. Kang, K. Chun and D. S. Chung (2005), Transient isotachophoresis of highly saline samples using a microchip, Sens. & Act. B 104, 269-275 https://doi.org/10.1016/j.snb.2004.05.011
  82. Masar, M., M. Dankova, E. Olvecka, A. Stachurova, D. Kaniansky and B. Stanislawski (2004), Determination of free sulfite in wine by zone electrophoresis with isotachophoresis sample pretreatment on a column-coupling chip, J. Chrom. A 1026, 31-39 https://doi.org/10.1016/j.chroma.2003.11.038
  83. Prest, J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard and B. J. Treves Brown (2004), Analysis of amino acids by miniaturised isotachophoresis, J. Chrom. A 1051, 221-226 https://doi.org/10.1016/j.chroma.2004.05.026
  84. Xu, Z.Q., T. Hirokawa, T. Nishine and A. Arai (2003), High-sensitivity capillary gel electrophoretic analysis of DNA fragments on an electrophoresis microchip using electrokinetic injection with transient isotachophoretic preconcentration, J. Chrom. A 990, 53-61 https://doi.org/10.1016/S0021-9673(03)00053-0
  85. Prest, J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard, K. Kalimeri, B. J. Treves Brown and M. Zgraggen (2004), Use of miniaturised isotachophoresis on a planar polymer chip to analyse transition metal ions in solutions from metal processing plants, J. Chrom. A 1047, 289-298
  86. Prest J. E., S. J. Baldock, P. R. Fielden, N. J. Goddard and B. J. Treves Brown (2003), Miniaturised isotachophoretic analysis of inorganic arsenic speciation using a planar polymer chip with integrated conductivity detection, J. Chrom. A 990, 325-334 https://doi.org/10.1016/S0021-9673(02)01968-4
  87. Masar, M., D. Kaniansky, R. Bodor, M. Johnck and B. Stanislawski (2001), Determination of organic acids and inorganic anions in wine by isotachophoresis on a planar chip, J. Chrom. A 916, 167-174 https://doi.org/10.1016/S0021-9673(00)01094-3
  88. Pethig, R. (1979), Dielectric and electronic properties of biological materials, p186, John Wiley & Sons, Surrey
  89. Cummings, E. B. and A. K. Singh (2003), Dielectrophoresis in microchips containing arrays of insulating posts: Theoretical and experimental results, Anal. Chem. 75, 4724-4731 https://doi.org/10.1021/ac0340612
  90. Fiedler, S., S. G. Shirley, T. Schnelle and G. Fultr (1998), Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70, 1909-1915 https://doi.org/10.1021/ac971063b
  91. Durr, M., J. Kentsch, T. Muller, T. Schnelle and M. Stelzle (2003), Microdevices for manipulation and accumulation of micro-and nanoparticles by dielectrophoresis, Electrophoresis 24, 722-731 https://doi.org/10.1002/elps.200390087
  92. Li, H. and R. Bashir (2002), Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes, Sens. & Act. B 86, 215-221 https://doi.org/10.1016/S0925-4005(02)00172-7
  93. Choi, J.-W., C. H. Ahn, S. Bhansali and H. T. Henderson (2000), A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems, Sens. & Act. B 68, 34-39 https://doi.org/10.1016/S0925-4005(00)00458-5
  94. Choi, J.-W., T. M. Liakopoulos and C. H. Ahn (2001), An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy, Biosens. & Bioelec. 16, 409-416 https://doi.org/10.1016/S0956-5663(01)00154-3
  95. Grand, K. M., J. W. Hemmert and H. S. White (2002), Magnetic field-controlled microfluidic transport, J. Am. Chem. Soc. 124, 462-467 https://doi.org/10.1021/ja016544y
  96. Minc, N., C. Futterer, K. D. Dorfman, A. Bancaud, C. Gosse, C. Goubault and J.-L. Viovy (2004), Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes, Anal. Chem. 76, 3770-3776 https://doi.org/10.1021/ac035246b
  97. Oakey, John, J. Allely and D. W. M. Marr (2002), Laminarflow-based separations at the microscale, Biotechnol. Prog. 18, 1439-1442 https://doi.org/10.1021/bp0256216
  98. Huang, L. R., E. C. Cox, R. H. Austin and J. C. Stum (2004), Continuous particle separation through deterministic lateral displacement, Science 304, 987-990 https://doi.org/10.1126/science.1094567
  99. Takayama, S., E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber and G. M. Whitesides (2003), Selective chemical treatment of cellular microdomains using multiple laminar streams, Chem. & Biol. 10, 123-130 https://doi.org/10.1016/S1074-5521(03)00019-X
  100. Jandik, P., B.H. Weigl, N. Kessler, J. Cheng, C.J. Morris, T. Schulte, and N. Avdalovic (2002), Initial study of using a laminar fluid diffusion interface for sample preparation in high-performance liquid chromatography, J. Chrom. A 954, 33-40 https://doi.org/10.1016/S0021-9673(02)00160-7
  101. Lion, N., J. -O. Gellon, H. Jensen and H. H. Girault (2003), On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry, J. Chrom. A 1003, 11-19 https://doi.org/10.1016/S0021-9673(03)00771-4
  102. Yamada, M., V. Kasim, M. Nakashima, J. Edahiro and M. Seki (2004), Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices, Biotechnol. & Bioeng. 88, 489-494 https://doi.org/10.1002/bit.20276
  103. Nam, K.-H., H. Hong, H.-M. Park, S. M. Lim, W.-J. Chang, D.-I. Kim and Y.-M. Koo (2005), Continuous flow fractionation of CHO-K1 cells in microfluidic device using aqueous two-phase extraction technique, In Biochemical Engineering from Genomics to Human Well-Being, M. B. Gu and J. Lee Eds.; Proc. Asia Pacific Biochemical Engineering Conference 2005, Jeju, pp253
  104. Park, S., P. M. Wolanin, E. A. Yuzbashyan, P. Silberzan, J. B. Stock, and R. H. Austin (2003), Motion to form a quorum, Science 301, 188 https://doi.org/10.1126/science.1079805