Browse > Article
http://dx.doi.org/10.4491/eer.2006.11.4.217

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS  

Ryu, Jae-Yong (Environmental Research Team, Daegu-Gyeongbuk Development Institute)
Kim, Do-Hyong (Environmental Engineering, Georgia Institute of Technology)
Choi, Kum-Chan (Department of Environmental Engineering, Dong-A University)
Suh, Jeong-Min (Department of Regional Environmental System Engineering, Pusan National University)
Publication Information
Environmental Engineering Research / v.11, no.4, 2006 , pp. 217-231 More about this Journal
Abstract
The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.
Keywords
Municipal waste incinerator; Thermal process; Combustion; Polychlorinated Naphthalenes; Polychlorinated Dibenzofurans; Chlorophenol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu, R., Morokuma, K., Mebel, A. M., and Lin, M. C., 'Ab inito study of the mechanism for the thernal decomposition of the phenoxy radicals,' J. Phys. Chem., 100, 9314 -9322 (1996)   DOI   ScienceOn
2 Eiceman, G. A., Clement, R.E., and Karasek F. W., 'Analysis of fly ash from municipal incinerators for trace organic compounds,' Analytic. Chem. 51, 2343-2350 (1979)   DOI   ScienceOn
3 Evans, C. S. and Dellinger, B., 'Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol,' Environ. Sci. Technol, 39, 122-127 (2005)   DOI   ScienceOn
4 Mikhailov, I. E., Dushenko, G. A., Kisin, A. V., Mugge, C., Zschunke, A., and Minkin, V. I., '1,5-sigmatropic shifts of chlorine in the cyclopentadiene ring,' Mendeleev Commun., 3, 85-88 (1994)
5 Mulholland, J. A., Lu, M.. and Kim, D. H., 'Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties,' Proc. Combust. Inst., 28, 2593-2599 (2000)   DOI
6 Cieplik, M. K., Epena, O. J., and Louw, R., 'Thermal Hydrogenolysis of Dibenzo-p-dioxin and Dibenzofuran,' Eur. J. Org. Chem., 2792 -2799 (2002)
7 Born, J. G. P., Louw, R. and Mulder, P., 'Formation of dibenzodioxins and dibenzofurans in homogeneous gas-phase reactions of phenols,' Chemosphere, 19, 401-406 (1989)   DOI   ScienceOn
8 Zhu, L. and Bozzelli, J. B., 'Kinetics and thermochemistry for the gas-phase keto-enol tautomerization of phenol<---> 2,4 - cyclohexadiene,' J. Phys. Chem A., 107, 3696 -3703 (2003)   DOI   ScienceOn
9 Okajima, T. and Imafuku, K., 'Theoretical study on chlorine and hydrogen shift in cycloheptatriene and cyclopentadiene derivatives,' J. Org. Chem., 67, 625-632 (2002)   DOI   ScienceOn
10 Manion, J. and Louw, R., 'Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K,' J. Phys. Chem., 93, 3563-3574 (1989)   DOI
11 Imagawa, T. and Yamashita, N., 'Isomer specific analysis of polychlorinated naphthalenes in halowax and fly ash,' Organohalogen Compounds, 19, 2]5-218 (1994)
12 Cypres, R. and Bettens, B., 'La formation de la plupart des composes aromatiques produits lors de la pyrolyse du phenol, ne fait pas intervenir le carbone porteur de la fonction hydroxyle,' Tetrahedron, 39, 359-365 (1975)
13 Olie, K., Vermeulen, P. L., and Hutzinger, O., 'Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some incinerators in the Netherlands,' Chem, 6, 455-459 (1977)   DOI   ScienceOn
14 Hanberg, A., Warn, F., Asplund, L., Haglund, E., and Safe, S., 'Swedish dioxin survey: determination of 2,3,7,8-TCDD toxic equivalent factors for some polychlorinated biphenyls and naphthalenes using biological tests,' Chemosphere, 20, 1161-1164 (1999)   DOI   ScienceOn
15 Spielmann, R. and Cramers, C. A., 'Cycleentadienic compounds as intermediates in the thermal degradation of phenols: Kinetics of thermal decomposition of cyclopentadiene,' Chromatographia, 5, 295-300 (1972)   DOI
16 Lovell A. B., Brezinsky, K., and Glassman, I., 'Benzene oxidation perturbed by NO2 addition,' Proc. Combust. Inst., 22, 1063-1074 (1988)
17 Abad, E., Caixach, J., and Rivera, J., 'Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes,' Chemosphere, 38, 109-120 (1999)   DOI   ScienceOn
18 Engwall, M., Brundstrom, B., and Jakobsson, E., 'Ethoxyresorufin O-deethylase (EROD) and aryl hydrocarbon hydroxylase (AHH)-inducing potency and lethality of chlorinated naphthalenes in chicken (Gallus domesticus) and eider duck (Somateria mollissima) embryos,' Archives of Toxicology, 68, 37-42 (1994)
19 Falandysz, J., 'Polychlorinated naphthalenes: an environmental update,' Environ. Pollut., 101, 77-90 (1998)   DOI   ScienceOn
20 Yang, Y., Mulholland, J. A., and Akki, U., ''Formation of furans by gas-phase reactions of chlorophenols,' Proc. Combust. Inst., 27, 1761-1768 (1998)   DOI   ScienceOn
21 Nakahata, D. -T. and Mulholland, J. A., 'Effects of dichlorophenol substitution pattern on furan and dioxin formation,' Proc. Combust. Inst., 28, 2701-2707 (2000)   DOI   ScienceOn
22 Sawerysyn, J. P., Briois, C., Visez, N., and Baillet, C., 'Dioxins and other products from the gas-phase oxidation of 2-chlorophenol over the range 450-900°C,' Organohalogen Compounds, 66, 1078-1084 (2004)
23 Evans, C. S. and Dellinger, B., 'Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-bromophenol,' Environ. Sci. Technol, 37, 5574-5580 (2003)   DOI   ScienceOn
24 Frank, P., Herzler, J., Just, T. H., and Wahl, C., 'High-temperature reactions of phenyl oxidation,' Proc. Combust. Inst., 25, 833-840 (1994)   DOI   ScienceOn
25 Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senken, S. M., Pitz, W. J. and Westbrook, C. K., 'Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame,' Proc. Combust. Inst., 26, 693-702 (1996)   DOI   ScienceOn
26 Marinov, N. M., Castaldi, M. J., Melius, C. F., and Tsang, W., 'Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Premixed Propane Flame,' Combust. Sci. Technol., 128, 295-342 (1997)   DOI   ScienceOn
27 Friderichsen, A. V., Shin, E. -J., Evans, R. J., Nimlos, M. R., Dayton, D. C., and Ellison, G. B., 'The pyrolysis of anisole ($C_6H_5OCO_3$) using a hypertherrnal nozzle,' Fuel, 80, 1747-1555 (2001)   DOI   ScienceOn
28 Melius, C. F., Colvin, M. E., Marinov, N. M., Pitz, W. J., and Senkan, S. M., 'Reaction mechanisms in aromatic hydrocarbon formation involving the $C_5H_5$ cyclopentadienyl moiety,' Proc. Combust. Inst., 26, 685-692 (1996)   DOI   ScienceOn
29 McEnally, C. S. and Pfefferle, L. D., 'The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames,' Proc. Combust. Inst., 28, 2569-2576 (2000)   DOI
30 Olivella, S., Sole, A., and Garcia-Rasa, A., 'Ab intio calculations for the potential surface for the thermal decomposition of the phenoxy radicals,' J. Phys. Chem., 99, 10549-10556 (1995)   DOI   ScienceOn
31 Schneider, M., Stieglitz, L., Will, R., and Zwick, G., 'Formation of polychlorinated naphthalenes on fly ash,' Chemosphere, 37, 2055-2070 (1998)   DOI   ScienceOn
32 Jarnberg, U., Asplund, C., and Jakobsson, E., 'Gas chromatographic retention of polychlorinated naphthalenes on non-polar, polarizable, polar and semectic capillary columns,' J. Chromat. 683A, 385-396 (1994)
33 Ryu, J. - Y., Mulholland, J. A., Dunn, J. E., Iino, F., and Gullett, B. K., 'Potential role of chlorination pathways in PCDD/F formation in a municipal waste incinerator,' Environ. Sci. Technol., 38, 5112-5119 (2004)   DOI   ScienceOn