• Title/Summary/Keyword: laminar flow

Search Result 936, Processing Time 0.025 seconds

On Comparison between 2-D and 3-D Numerical Models used to Analyze the Wave Field around a Permeable Submerged Breakwater (투과성잠제 주변의 파동장 해석을 위한 2-D 및 3-D 수치계산의 비교)

  • Hur, Dong-Soo;Choi, Dong-Seok;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2008
  • The aim of this study is to compare the numerical results obtained by 2-D and 3-D models which are used to examine the wave field around a permeable submerged breakwater. At first, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar and turbulent resistance terms and determine the eddy viscosity with LES turbulent model, is used and validated by comparing with existing experimental data. And then, the numerical test on the wave field around a permeable submerged breakwater is performed. It is revealed from the numerical results that, at the onshore side of the submerged breakwater, the wave height by 2-D analysis is higher than that by 3-D analysis. Also, the time-averaged mean flow around a submerged breakwater is discussed in detail.

Flow Characteristics of Al2O3 Nanofluids with Nanoparticles of Various Shapes (나노입자 형상 변화에 따른 알루미나 나노유체의 유동 특성)

  • Hwang, Kyo-Sik;Ha, Hyo-Jun;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • To study the flow characteristics of water-based $Al_2O_3$ nanofluids according to the shape of the nanoparticles, we measure the pressure drop in a fully developed laminar flow regime. Water-based $Al_2O_3$ nanofluids of 0.3 Vol.% with sphere-, rod-, platelet-, and brick-shaped nanoparticles are manufactured by the two-step method. Zeta potential is measured to examine the suspension and dispersion characteristics, and TEM image is considered to confirm the shape characteristics of the nanoparticles. The experimental results show that the pressure drop of $Al_2O_3$ nanofluids depends on the shape of the nanoparticles although the nanofluids has same volume fraction of nanoparticles. This is explained by the surface area per unit mass of the nanoparticles and the size of the nanoparticles suspended in the base fluids.

Permeation Characteristics of the Plate & Frame Membrane Module with Protuberances (돌기형 평판 분리막 모듈의 투과특성)

  • Chung, Kun-Yong;Jeon, Sung-Il
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.168-175
    • /
    • 2008
  • This study was carried out for the plate and frame membrane modules equipped with and without plastic protuberances on the support frame in order to determine the effect of eddy flow induced by the protuberances on permeate flux. The initial time for rapidly declined permeate flux on the module with protuberances was delayed twice or more than that on the module without protuberances when kaolin solution was permeated at the operating pressures from 0.4 to 1.6 bar. Also decreasing ratio of the kaolin solution to pure water flux for module with protuberances was 1 to 5% lower than that for module without protuberances. The flux improvement due to protuberances at laminar flow corresponding Reynolds number 1,750 was about double as compared with that in the transition flow region. In general, the kaolin fouling reduction for the plate module with protuberances during initial filtration process was very effective, even though the permeate flux after 60 minutes filtration did not increase significantly.

Characteristics of Sparkover Discharge in Flowing Air with the variation of Reynolds Number (Reynolds Number를 변수로한 유동공기의 방전특성)

  • 김영헌;이광식;이동인
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.2
    • /
    • pp.37-48
    • /
    • 1991
  • This paper shows the characteristics of sparkover discharge in flowing air ranging from O(Reynolds number, Re) to $10.52{\times}10^4$(Re). Also, we investigated changes of discharge pattern for constant input power by adjustment of the Reynolds number. Flowing air duct of this investigation is a circular tube. The flow at the experimented positions' section is described as fully development laminar flow. The important results obtained from this study are as follows. The sparkover discharge path of flowing air can be analyzed by the theories of flow field for air. The sparkover voltage shows nearly the maximum value when the Reynolds number of flowing air ranges $3{\times}10^4$ to $4{\times}10^4$The maximum sparkover voltages of flowing air are about 6.3[kV] higher than those of static air. The discharge pattern can be controlled by adjustment of the Reynolds number.

  • PDF

Forced Convection Cooling Across Rectangular Blocks in a Parallel Channel (블럭이 부착된 수평 유로에서의 강제대류 열전달 해석)

  • 조한승;유재석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.251-257
    • /
    • 1993
  • The purpose of this study is to obtain an improved interpretation of heat transfer phenomena between blocks and fluids in the parallel conducting plates. Flow is two-dimensional, incompressible steady laminar flow over rectangular blocks, representing finite heat source on parallel plate. Heat transfer phenomena, temperature of blocks and heat transfer into the flow field are investigated for different spacings between blocks and Reynolds numbers. Results indicate that Nusselt number on the far upstream corner of the block was higher than that of any part of the block. As Reynolds number and spacings of blocks increased, Nusselt number increased. The distribution of local Nusselt number on the top surface of the conducting plate is similar to the case with insulated plate. Temperature of the block which has heat source in half cubage was approximately twice as high as temperature of the block which has heat source in whole cubage. As Reynolds number and spacings of blocks increased, overall temperature decreased. The peak value of block temperature occurred at position shifted to the right or upper right from center. The maximum temperature of block can be expressed as a function of Reynolds number, spacings between blocks, position of maximum temperature of each block and then it is possible to predict the maximum temperature of blocks.

  • PDF

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

A study of submicron particle deposition onto cylinder surface in nonisothermal two-phase flow (비등온 이상유동에서 원통벽면으로의 미소입자 부착에 관한 연구)

  • 정상현;김용진;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.828-836
    • /
    • 1987
  • The inclusion of thermophoresis in particle deposition studies has often been treated separately from deposition due to flow characteristics. Also previously reported experimental results on thermophoresis have been studied in the regions of relatively small temperature gradients. In this study, using real-time laser light reflectivity method, we measured the angular dependence of the deposition rates of particles of the cylindrical collector surface, which immerged in laminar flow of a hot gas suspension of small particles. And we extended the previous narrowband results of thermophoretic deposition rates to the regions of large temperature gradients between the hot gas stream and the collector surface. Based on the obtained data, the cylinder's forward stagnation-point region is considerably enriched in particle 'phase' density owing to the compressibility effect, which leads to locally enhanced deposition while the downstream region from the stagnation point inertial force acts in the opposite direction, which tends to centrifuge particles away from the wall, thus the local deposition rates by thermophoresis are reduced.

Heat transfer and flow characteristics of a circular jet impinging on a convex curved surface (볼록한 반구면에 충돌하는 원형제트의 열전달 및 유동특성)

  • Lee, Dae-Hui;Jeong, Yeong-Seok;Im, Gyeong-Bin;Kim, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.579-588
    • /
    • 1997
  • The heat transfer and flow measurements from a convex curved surface to a circular impinging jet have been made. The flow at the nozzle exit has a fully developed velocity profile. The jet Reynolds number (Re) ranges from 11,000 to 50,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the dimensionless surface curvature (d/D) from 0.034 to 0.089. The results show that the stagnation point Nusselt number (N $u_{st}$ ) increases with increasing value of d/D. The maximum Nusselt number at the stagnation point occurs at L/d .ident. 6 to 8 for all Re's and d/D's tested. For larger L/d, N $u_{st}$ dependency on Re is stronger due to an increase of turbulence in the approaching jet as a result of the more active exchange of momentum with a surrounding air. The local Nusselt number decreases monotonically from its maximum value at the stagnation point. However, for L/d=2 and Re=23,000, and for L/d.leq.4 and Re=50,000, the stream wise Nusselt number distributions exhibit secondary maxima at r/d .ident. 2.2. The formation of the secondary maxima is attributed to an increase in the turbulence level resulting from the transition from a laminar to a turbulent boundary layer.ndary layer.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.

Modeling of the Artery Tree in the Human Upper Extremity and Numerical Simulation of Blood Flow in the Artery Tree (상지동맥 혈관계의 모델링과 혈유동의 전산수치해석)

  • Kim, Keewon;Kim, Jaeuk U.;Beak, Hyun Man;Kim, Sung Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.221-226
    • /
    • 2016
  • Since arterial disease in the upper extremity is less common than that in the lower extremity, experimental and numerical investigations related to upper extremity have been rarely performed. We created a three-dimensional model of the arteries, larger than approximately 1 mm, in a Korean adult's left hand (from brachial to digital arteries), from 3T magnetic resonance imaging (MRI) data. For the first time, a three-dimensional computational fluid dynamic method was employed to investigate blood flow velocity, blood pressure variation, and wall shear stress (WSS) on this complicated artery system. Investigations were done on physiological blood flows near the branches of radial and deep palmar arch arteries, and ulnar and superficial palmar arch arteries. The flow is assumed to be laminar and the fluid is assumed to be Newtonian, with density and viscosity properties of plasma.