• Title/Summary/Keyword: lactide

Search Result 277, Processing Time 0.02 seconds

Polymerization of L-lactide Using Methylalumionxane (Methylaluminoxane을 이용한 L-lactide 중합)

  • Yim, Jin-Heong;Kim, Da Hee;Ko, Young Soo
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.365-369
    • /
    • 2015
  • In this study, the bulk and solution polymerizations of L-lactide using an aluminium compound, methylaluminoxane (MAO), were performed. In the bulk polymerization, the conversion of polymerization was increased with increasing the amount of catalyst in feed. The largest molecular weight (Mw), 60800 g/mol, was shown at the MAO amount in feed of 0.15 mmol, and Mw was decreased above 0.15 mmol of MAO in feed. At the 0.15 mmol of MAO in feed, turn of frequency (TOF) was the highest, and it was decreased with increasing MAO amount in feed. In the solution polymerization, the induction time of 30 min was shown. The conversion of polymerization was linearly increased with the polymerization time, and the highest Mw, 54700 g/mol, was achieved at the polymerization time of 6 h.

Ring-Opening Polymerization of ʟ-Lactide with Polydimethylsiloxane Based Stabilizers in Supercritical Carbon Dioxide (폴리디메틸실록산계 안정화제를 이용한 초임계 이산화탄소에서의 ʟ-Lactide의 개환중합)

  • Hwang, Ha Soo;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • Poly($\small{L}$-Lactide)(PLLA) was prepared by a ring-opening polymerization of $\small{L}$-Lactide with various polydimethylsiloxane(PDMS) based copolymers as a stabilizer in supercritical carbon dioxide($scCO_2$). The block copolymeric stabilizers were synthesized by group transfer polymerization (GTP) by using PDMS macroinitiator. PLLA was found to be produced with fairly low molecular weight distribution as confirmed by gel permeation chromatography(GPC) analysis. Scanning electron microscopy (SEM) results showed that sub-micron size Poly($\small{L}$-lactide)(PLLA) particles were formed by suspension polymerization.

  • PDF

Characterization of Hyaluronic Acid Membrane Cross-linked with Lactide (락타이드로 가교시킨 히아루론산 막의 특성)

  • Kwon, Ji-Young;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.599-604
    • /
    • 2005
  • The hyaluronic acid (HA) with excellent biocompatibility has been combined with lactide, the ester dimer of polylactide, with good biodegradability to produce biocompatible materials which can control the period of degradation in a human body. By freeze frying method, HA and lactide were crosslinked with crosslinking agent, 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). Degree of lactide and EDC reaction was determined by the analysis of nuclear magnetic resonance spectroscopy. Both lactyl group and EDC conversion increased as the mole ratio of lactide to HA increased from 5 to 13. The membrane swelled less and became more brittle with the more addition of lactyl group resulting from the higher mole ratio of lactide to HA. Swelling ratio decreased and tensile modulus increased due to the more addition of lactyl group as the EDC concentration increased or reaction temperature decreased. Drug release experiment from various membranes with different degree of crosslinking showed that permeability decreased with increasing degree of crosslinking. The degradation became slower with the more addition of lactyl group. Mechanical property and degradation rate of the synthesized membrane were shown to be controlled through adjusting operation parameters such as mole ratio, temperature, and crosslinking agent concentration.

Drug-release Properties of Double-layered Microspherical Carriers which Consist of Outer Shell of Poly(D,L-lactide) and Inner Core of Alginate or Chitosan (Poly(D,L-lactide)를 외부 껍질로 하고 Alginate 또는 Chitosan을 내부 코어로 구성한 이중미립구 담체의 약물방출 특성)

  • Kim, Ja Won;Song, Min Jeong;Lee, Sang Min;Lim, So Ryong;Jung, Su Jin;Kim, Hong Sung
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.699-704
    • /
    • 2012
  • Double-layered polymeric carrier was designed for release control of hydrophilic drug in oral administration. Biopolymeric chitosan and alginate were examined as polar absorbents, poly(D,L-lactide) as a hydrophobic shell, and theophylline and diclofenac sodium as loading drugs. The fabrication of the carriers was prepared in the form of double-layered microsphere for delayed and successively extended release, which consisted of outer shell of poly(D,L-lactide) and inner core of alginate or chitosan with drugs. Morphologies and drug-release behaviors of the carriers were investigated, which were influenced by a combination of polarity between carrier and drug. It was confirmed that the relative polarities of the carriers, the drugs, and the environmental pH affected significantly the drug-release property.

Control of Drug Release from Polymeric Matrices Coated with Poly(DL-lactide) I. Effect of Coasting Substance on the Drug Release in pH 1.2 Hydrochloride Solution (Poly(DL-lactide)로 피막된 고분자 매트릭스로부터 약물 방출 조절 I. pH 1.2 염산 용액에서 피막물질이 약물방출에 미치는 영향)

  • 나재운;박영훈
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • The polymeric matrices coated with poly(DL-lactide) were prepared using chitosan derivatives such as chitosan, chitosan hydrochloride, and sulfonated chitosan for application of drug delivery systems. The drug release study using prednisolone as a model drug was performed in the hydrochloride solution at pH 1.2. The release rate of drug was decreased according to the increased content of matrices. The release rate of prednisolone according to the kinds of polymeric matrices coated were decreased in the order to chitosan, sulfonated chitosan, and chitosan hydrochloride. Drug release rate of polymeric matrices coated with poly(DL-lactide) was not only two times slower than noncoated one, but also the burst effect of initial period of drug release was decreased in comparison with noncoated one. From these results, it was expected that these formulations based on the chitosan derivative matrices coasted with poly(DL-lactide) were acceptable drug delivery devices for a sustained-release dosage form of drug.

  • PDF

Study on Degradation Rates of Biodegradable Polymers by Stereochemistry (입체화학을 이용한 생분해성 고분자의 분해속도에 관한 연구)

  • Park, Chan-Young;Choi, Yong-Hae;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.797-802
    • /
    • 2009
  • To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of d-lactide and l-lactide units were synthesized by the ring open polymerization and the their degradation kinetics were measured by a Langmuir film balance. The alkaline (pH=11) degradation of poly(l-lactide) (l-PLA) monolayer showed the faster rate at a surface pressure of 4 mN/m in the ranges from to 0 to 7 mN/m. However, the enzymatic degradation of l-PLA with Proteinase K did not occur until 4 mN/m. Above a constant surface pressure of 4 mN/m, the degradation rate was increased with a constant surface pressure. These behaviors might be attributed to the difference in the contacted area with degradation medium: alkaline ions need small contact area with l-PLA while enzymes require much bigger one to be activated due to different medium sizes. The stereochmical PLA monolayers showed that the alkaline degradation was increased with their optical impurities while the enzymatic one was inversed. These results could be explained by the decrease of crystallinity with the optical impurity and the inactivity of enzyme to d-LA unit.

Synthesis and Characterization of Biocompatible Block Copoly (L-Lactde-$\gamma$-Benzyl-L-Glutamate) (생체적합성 공중합체의 합성과 물성에 관한 연구 -Block Copoly (L-Lactde-$\gamma$-Benzyl-L-Glutamate)-)

  • Sung, Yong-Kiel;Kim, Hoon;Song, Dae-Kyung;Kim, Young-Soon;Paek, U-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.215-224
    • /
    • 1988
  • Block copoly(L-lactide-${\gamma}$-benzyl-L-glutamate)was synthesized from L-lactide by cationic ring opening polymerization and ${\gamma}$-benzyl-L-glutamate N-carboxy anhydride by introducing amino group terminated poly(L-lactide). L-lactide was polymerized in the presence of stannous octate at $110^{\circ}C$ and ${\gamma}$-benzyl- L-glutamate was polymerized in the presence of NaH at room temperature. The synthesized monomers and copolymers were identified by IR and NMR. The Itermal properties of the copolymers were characterized by differential scanning calorimetry and thermogravimetry. The thermal stability and melting temperature(Tm) of the block copolymers were measured and discussed. The activation energies of thermal decomposition for the block copoly(L-lactide-${\gamma}$ benzyl-L-glutamate) were evaluated from the thermogravimetric data by Freeman and Carroll method.

  • PDF

Synthesis and Properties of Block Copolymer Comprising of Poly(DL-lactic acid) and Poly(ethylene oxide) (Poly(DL-lactic acid)/Poly(ethylene oxide)을 포함한 블록공중합체의 합성 및 특성)

  • 이찬우;배기서
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.582-588
    • /
    • 2002
  • The block copolymers were prepared by the ring opening polymerizati on of DL-lactide by poly(ethylene oxide) (PEO) with diethylzinc (ZnE$_2$) as a catalyst. When the feed ratio of PEO was over 30% relative to DL-lactide, the polymerization of DL-lactide took place from the PEO hydroxyl terminals to provide the desired A -B-A or A-B block copolymer. The block copolymers were made of films by cast method and the films obtained was drawn to 2.5 times at 60 $\^{C}$. At the same draw ratio, the tensile modulus of the films was decreased with increasing PEO content in the block copolymers. It was therefore suggested that the block copolymers comprising of PDLLA and PEO, had high potentials as the biomaterials with improved flexibility.

Effects of Annealing and Drawing on Crystal Structure and Supermolecular Structure of Poly (L-Lactide)

  • Sawade, E.;Irie, S.;Sasaki, T.;Sakurai, K.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.97-97
    • /
    • 2003
  • Recently, attention has been paid to biodegradable polymers in relation to the global environment. Poly-lactide (PLA) is one of such polymers and has studied by some investigators. In this study, the changes of crystal structure, crystal orientation and supermolecular structure of Poly(L-lactide) (PLLA) during drawing or annealing have been investigated.

  • PDF

Growth of Monolayered Poly(l-lactide) Lamellar Crystals on a Substrate

  • Lee, Won-Ki;Lee, Jin-Kook;Ha, Chang-Sik
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.511-513
    • /
    • 2003
  • Hydroxyl groups were introduced onto the surface of a silicon wafer by O$_2$ plasma treatment. Poly(l-lactide) (1-PLA) was attached onto the surface-modified silicon wafer by the ring-opening polymerization of l-lactide using the hydroxyl group as an initiator. Lamellar single crystals of 1-PLA were grown directly on the 1-PLA-attached silicon wafer from a 0.025% solution in acetonitrile at 5$^{\circ}C$. A well-separated, lozenge-shaped, monolayered lamellar single crystal was prepared because the 1-PLA-attached silicon wafer acts as an initial nucleus.