Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.3.365

Polymerization of L-lactide Using Methylalumionxane  

Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University)
Kim, Da Hee (Department of Chemical Engineering, Kongju National University)
Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
Publication Information
Polymer(Korea) / v.39, no.3, 2015 , pp. 365-369 More about this Journal
Abstract
In this study, the bulk and solution polymerizations of L-lactide using an aluminium compound, methylaluminoxane (MAO), were performed. In the bulk polymerization, the conversion of polymerization was increased with increasing the amount of catalyst in feed. The largest molecular weight (Mw), 60800 g/mol, was shown at the MAO amount in feed of 0.15 mmol, and Mw was decreased above 0.15 mmol of MAO in feed. At the 0.15 mmol of MAO in feed, turn of frequency (TOF) was the highest, and it was decreased with increasing MAO amount in feed. In the solution polymerization, the induction time of 30 min was shown. The conversion of polymerization was linearly increased with the polymerization time, and the highest Mw, 54700 g/mol, was achieved at the polymerization time of 6 h.
Keywords
methylaluminoxane(MAO); poly(lactide); L-lactide;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. H. Kwun, W. S. Cha, J. W. Nah, and D. B. Lee, J. Korean Ind. Eng. Chem., 12, 148 (2001).
2 J. H. Kim, J. G. Jegal, B. K. Song, and C. H. Shin, Polym. Korea, 35, 52 (2011).
3 Y. S. You, K. H. So, and M. S. Chung, Korean J. Food Sci. Technol., 40, 365 (2008).
4 A. J. R. Lasprilla, G. A. R. Martinez, B. H. Luneli, A. L. Jardini, and R. M. Fiho, Biotechnol. Adv., 30, 321 (2012).   DOI   ScienceOn
5 W. J. Kim, J. H. Kim, S. H. Kim, and Y. H. Kim, Polym. Korea, 24, 431 (2000).
6 Y. Ikada and H. Tsuji, Macromol. Rapid. Commun., 21, 117 (2000).   DOI
7 K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol., 101, 8493 (2010).   DOI   ScienceOn
8 E. M. Filachione, Ind. Eng. Chem., 36, 223 (1994).
9 A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).   DOI   ScienceOn
10 R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 12, 1841 (2000).   DOI
11 E. M. Filachione, Ind. Eng. Chem., 36, 223 (1994).
12 Y. H. Kim and S. H. Kim, Ind. Eng. Chem., 3, 387(1992).
13 K. B. Aubrecht, M. A. Hillmyer, and W. B. Tolman, Macromolecules, 35, 644 (2002).   DOI   ScienceOn
14 H. R. Kricheldorf, C. Boettcher, and K. U. Tonnes, Polymer, 33, 2817 (1992).   DOI   ScienceOn
15 A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings, Macromolecules, 25, 6419(1992).   DOI
16 H. R. Kricheldorf and C. Boettcher, Makromol. Chem., 194, 1653 (1993).   DOI
17 J. Okuda and I. L. Rushkin, Macromolecules, 26, 5530 (1993).   DOI   ScienceOn
18 M. Hayakawa, M. Mitani, T. Yamada, and T. Mukaiyama, Macromol. Chem. Phys., 198, 1305 (1997).   DOI   ScienceOn
19 R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci., Polym. Rev., 45, 337 (2005).
20 F. Chabot, M. Vert, S. Chapelle, and P. Granger, Polymer, 24, 53 (1983).   DOI   ScienceOn
21 Y. H. Noh and Y. S. Ko, Polym. Korea, 36, 53 (2012).   DOI   ScienceOn
22 J. Y. Yoo, D. H. Kim, and Y. S. Ko, Polym. Korea, 36, 593 (2012).   DOI   ScienceOn
23 J. Y. Yoo and Y. S. Ko, Polym. Korea, 36, 693 (2012).   DOI   ScienceOn
24 J. Y. Yoo, Y. Kim, and Y. S. Ko, J. Ind. Eng. Chem., 19, 1137 (2012).
25 H. Shin, Macromol. Symp., 27, 97(1995).
26 A. K. Sudesh, H. Abe, and Y. Doi, Prog. Polym. Sci., 25, 1503 (2000).   DOI   ScienceOn
27 K. Jamshidi, S. H. Hyon, and Y. Ikada, Polymer, 29, 2229 (1988).   DOI   ScienceOn