• Title/Summary/Keyword: lactic fermentation

Search Result 1,679, Processing Time 0.029 seconds

Variation in the functional compounds of molten salt Kimchi during fermentation

  • Park, Kyubeen;Kim, Yeonmi;Kim, Jae-Han;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.173-182
    • /
    • 2019
  • To produce a high-quality Kimchi product, molten salt was used for the Kimchi. Changes in the physiochemical properties and functional compounds were analyzed during fermentation. The salinity of bay salt Kimchi was higher than that of the molten salt Kimchi. The fermentation speed of the lactic acid bacteria in the molten salt Kimchi was significantly faster. To evaluate the effects of the salts on the changes in the functional compounds during fermentation, the antioxidant activity, total phenolic compounds (TPC), flavonols, phenolic acids, and glucosinolates in Chinese cabbage were analyzed. In the first 9 days, antioxidants were decreased during this fermentation period and then, increased after that. TPC was slightly increased for all the conditions after 40 days fermentation. Kaempferol was a major flavonol but had a relatively larger decrease in the molten salt Kimchi than in the bay salt samples. Phenolic acid did not show any significant difference among the samples. The glucosinolate contents were significantly decreased in all the conditions of Kimchi during the fermentation period. Consequently, the molten salt greatly affected the fermentation speed of Kimchi and the total characteristics of the Kimchi lactic acid bacteria. Although the functional compounds of Chinese cabbage were decreased during the fermentation of Kimchi, this decrease did not profoundly deteriorate the food quality. Therefore, high-quality Kimchi with enhanced bioactivity will be available if appropriate Chinese cabbages that have enhanced functional compounds are used.

Antioxidant Activity Study of Artemisia argyi H. Extract Fermented with Lactic Acid Bacteria (젖산균으로 발효한 섬애쑥(Artemisia argyi H.) 추출물의 항산화 활성 연구)

  • Ji Hyun Kim;Nan Kyung Kim;Ah Young Lee;Weon Taek Seo;Hyun Young Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Objectives: In this study, we investigated physicochemical characteristics and antioxidant activity of Artemisia argyi H. fermented with lactic acid bacteria. Methods: The A. argyi water extract was fermented using lactic acid bacteria isolated from kimchi at 30℃ for 96 h. To evaluate the physicochemical characteristics, we investigated pH, total acidity, viable cells, free sugars, free organic acids, and free amino acids contents during fermentation. In addition, we examined antioxidant activity of fermented Artemisia argyi H. by measurement of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazinyl (DPPH) and 2,2'-azubi-bus-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) scavenging activities. Results: During fermentation time, pH of fermented A. argyi was decreased from 4.57 to 3.22, and total acidity was increased from 0.39% to 1.63%. The number of lactic acid bacteria fermented A. argyi was increased from 1.28×107 CFU/ml to 3.75×108 CFU/ml during fermentation time. The free sugars of fermented A. argyi were confirmed glucose and sucrose. In addition, the organic acid content of fermented A. argyi was the highest in oxalic acid and lactic acid. In the composition of free amino acids, content of ornithine increased from 4.4 mg/100 g to 18.8 mg/100 g compared with non-fermented A. argyi. Furthermore, DPPH and ABTS+ radical scavenging activities of fermented A. argyi increased in a dose-dependent manner. Conclusions: In conclusion, our data suggest that lactic acid fermentation of A. argyi could be used as a functional food for antioxidants.

Optimization of Lactic Acid Production from Kitchen Refuses (음식물쓰레기를 이용한 젖산 생산의 최적화)

  • 이백석;윤현희;김은기
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.207-211
    • /
    • 2001
  • Statistical experimental design methods were employed to select the cultivation factors influencing latic acid production during the fermentation of kitchen refuses. Working volume and pH swings were identified as the main factors affecting lactic acid production. Optimum pH swing was pH 7.8 and working volume was 125 mL in a 250 mL flask. Under optimum condition, lactic acid was produced at 21.8 g/L, which was 6.2 times higher than produced during uncontrolled fermentation.

  • PDF

Effect of Additives on the Fermentation Quality and Residual Mono- and Disaccharides Compositions of Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Shao, Tao;Shimojo, M.;Wang, T.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1582-1588
    • /
    • 2005
  • This study aimed to evaluate the effects of silage additives on the fermentation qualities and residual mono- and disaccharides composition of silages. Forage Oats (Avena sativa L.) and Italian Ryegrass (Lolium multiflorum Lam.) were ensiled with glucose, sorbic acid and pre-fermented juice of epiphytic lactic acid bacteria (FJLB) treatments for 30 days. In both species grass silages, although the respective controls had higher contents of butyric acid (20.86, 33.45g $kg^{-1}$ DM) and ammonia-N/total nitrogen (100.07, 114.91 g $kg^{-1}$) as compared with other treated silages in forage oats and Italian ryegrass, the fermentation was clearly dominated by lactic acid bacteria. This was well indicated by the low pH value (4.27, 4.38), and high lactic acid/acetic acid (6.53, 5.58) and lactic acid content (61.67, 46.85 g $kg^{-1}$ DM). Glucose addition increased significantly (p<0.05) lactic acid/acetic acid, and significantly (p<0.05) decreased the values of pH and ammonia-N/total nitrogen, and the contents of butyric acid and volatile fatty acids as compared with control, however, there was a slightly but significantly (p<0.05) higher butyric acid and lower residual mono- and di-saccharides as compared with sorbic acid and FJLB additions. Sorbic acid addition showed the lowest ethanol, acetic acid and ammonia-N/total nitrogen, and highest contents of residual fructose, total mono- and di-saccharides and dry matter as well as high lactic acid/acetic acid and lactic acid content. FJLB addition had the lowest pH value and the highest lactic acid content, the most intensive lactic acid fermentation occurring in FJLB treated silages. This resulted in the faster accumulation of lactic acid and faster pH reduction. Sorbic acid and FJLB additions depressed clostridia or other undesirable bacterial fermentation, thus this decreased the water-soluble carbohydrates loss and saved the fermentable substrate for lactic acid fermentation.

Effect of Lactic-Fermentation on the n-Hexanal Content of Peanut Milk (젖산발효가 땅콩유(乳)의 n-Hexanal 함량에 미치는 영향)

  • Lee, Chan
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.146-149
    • /
    • 2013
  • This study was performed to identify the effect of lactic-fermentation of peanut milk on n-hexanal content. Changes in viable cell populations, pH and titratable acidity indicated that there was a synergistic interaction between Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus during fermentation. The analysis of headspace volatiles revealed that n-hexanal nearly disappeared due to fermentation. S. salivarius subsp. thermophilus was more effective than L. delbrueckii subsp. bulgaricus in reducing the n-hexanal content.

Fermentation of onion extract by lactic acid bacteria enhances its physicochemical properties (유산균에 의한 양파 착즙액의 발효효과와 이화학적 특성)

  • Kim, Su-hwan;Lee, Chae-Mi;Jeong, Jae-Hee;Choi, Yu-Ri;Lee, Dong-hun;Lee, Chae-yun;Huh, Chang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.445-454
    • /
    • 2022
  • This study aimed to improve the physiological activity of onion juice via lactic acid bacterial fermentation. Seven types of lactic acid bacteria were used for the fermentation of onion juice. The pH and sugar content of the onion juice decreased, while its titratable acidity increased after lactic acid bacteria fermentation, and the cell count of lactic acid bacteria was 7.31-10.40 log CFU/mL. The total free sugar content decreased, while the total organic acid content increased in the fermented onion juice. Quercetin content of the fermented juice was 0.13-0.53 mg/kg. The total polyphenol and flavonoid contents increased after fermentation. Additionally, the 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical cation scavenging activities were increased by fermentation. Overall, lactic acid bacteria fermentation of onion juice enhanced its physiological activity. Based on these findings, Bifidobacterium breve KCTC 3441 was selected as the onion juice fermentation strain.

Selection of Mixed Lactic Acid Bacteria for Optimal Sponge Fermentation of Soda Cracker (소다 크레커의 최적 스폰지 발효를 위한 혼합젖산균의 선별)

  • Kim, Sang-Yong;Lee, Byung-Don;Kim, Jung-Min;Lim, Dong-Joon;Kim, Woo-Jung;Oh, Deok-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.150-155
    • /
    • 1997
  • The twenty strains of Lactobacillus genus were tested for the optimal sponge fermentation of soda cracker. The six strains such as L. brevis, L. delbrueckii, L. fermentum, L. leichmanii, L. plantarum and L. sanfrancisco were selected because these strains did not smell off-flavor and showed the high value of TTA (total titrable acidity) after the fermentation. The selected strains consisted of the five strains of L. brevis, L. delbrueckii, L. fermentum, L. leichmanii and L. plantarum that mainly inhabited soda clacker and L. sanfrancisco that existed in San Francisco bread. The lactic acid bacteria were inoculated to the medium containing 10% wheat flour and then pH, TTA, acetic acid and lactic acid were measured during the sponge fermentation. The four strains of L. brevis, L. delbrueckii, L. fermentum and L. plantarum were used for the mixed lactic acid bacteria of sponge fermentation because the TTAs of L. brevis, L. fermentum and L. plantarum were higher than those of other lactic acid bacteria and L. delbrueckii rapidly produced organic acids and a large amount of acetic acid. Among the combination of L. brevis, L. fermentum, L. delbrueckii and L. plantarum, the mixed lactic acid bacteria of L. brevis, L. fermentum and L. plantarum showed the highest TTA, the lowest pH and the largest amount of acetic acid. Therefore, the mixed lactic acid bacteria of L. brevis, L. fermentum and L. plantarum were used for optimal sponge fermentation of soda cracker.

  • PDF

Lactic held Bacteria for the Preservation of Fruit and Vegetables (과실 및 채소류의 저장에 있어서 Lactic Acid Bacteria의 이용)

  • 김건희;배은경
    • Food Science and Preservation
    • /
    • v.6 no.2
    • /
    • pp.245-254
    • /
    • 1999
  • Traditionally, lactic acid bacteria(LAB) is microorganism that has been used for food fermentation. Bacteriocinogenic culture and by-products of lactic acid bacteria have the antimicrobial effect. The antimicrobial effect of lactic acid bacteria enable to extend the shelf life of many foods through fermentation processes. Therefore, a lot of investigation of antimicrobial compounds from LAB have been studied on the effect of foods preservation of fish, meat, dairy product, refreserated nonfermentive food and so on. However a little research on the effects of LAB in fruit and vegetables preservation has been reported. In this study, effectiveness of LAB as a quality preservative in fruit and vegetables storage were reviewed.

  • PDF

Cell-Recycle Continuous Fermentation of Enterococcus faecalis RKY1 for Economical Production of Lactic Acid by Reduction of Yeast Extract Supplementation

  • Lee, Ryun-Kyung;Ryu, Hwa-Won;Oh, Hurok;Kim, Mina;Wee, Young-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.661-666
    • /
    • 2014
  • Both lactic acid productivity and cell growth were linearly correlated with yeast extract supplementation in batch fermentation. During conventional continuous operation, although fresh feed was introduced into the bioreactor with a significantly low dilution rate (0.04 $h^{-1}$), the amount of yeast extract employed was not enough to maintain the growth of microorganism. However, when the fresh feed contained 100 g/l glucose and 2 g/l yeast extract during cell-recycle continuous operation at a dilution rate of 0.04 $h^{-1}$, more than 90 g/l lactic acid was continuously produced, with the average productivity of 3.72 $g/l{\cdot}h$. In this experiment, 82 g of yeast extract (77% of reduction yield) could be reduced for the production of 1 kg of lactic acid compared with batch fermentation of a similar volumetric productivity.

Fed-batch Culture of Enterococcus faecalis RKY1 for L[+]-Lactic Acid Production (L[+]-Lactic Acid 생산을 위한 Enterococcus faecalis RKY1의 유가식 배양)

  • Wee Young Jung;Kim Jin Nam;Yun Jong Sun;Park Don Hee;Kim Do Man;Ryu Hwa Won
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.410-414
    • /
    • 2004
  • Fed-batch cultures of Enterococcus faecalis RKY1 were performed to maximize the L(+)-Iactic acid concentration in the bioreactor. The highest lactic acid concentration was obtained at around 225 g/L by intermittent feeding the concentrated glucose media containing 500 g/L of glucose and 15 g/L (or 75 g/L) of yeast extract. However, in all fed-batch cultures, volumetric productivities of lactic acid gradually decreased due to the inhibitory effect of lactic acid produced during the fermentation. The highest value of lactic acid concentration obtained in this work corresponded to around 1.5-fold increase compared with conventional batch fermentation.