DOI QR코드

DOI QR Code

Antioxidant Activity Study of Artemisia argyi H. Extract Fermented with Lactic Acid Bacteria

젖산균으로 발효한 섬애쑥(Artemisia argyi H.) 추출물의 항산화 활성 연구

  • Ji Hyun, Kim (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Nan Kyung, Kim (Department of Food Science, Gyeongsang National University) ;
  • Ah Young, Lee (Department of Food Science and Nutrition, Gyeongsang National University) ;
  • Weon Taek, Seo (Department of Food Science, Gyeongsang National University) ;
  • Hyun Young, Kim (Department of Food Science and Nutrition, Gyeongsang National University)
  • 김지현 (경상국립대학교 식품영양학과) ;
  • 김난경 (경상국립대학교 식품과학과) ;
  • 이아영 (경상국립대학교 식품영양학과) ;
  • 서원택 (경상국립대학교 식품과학과) ;
  • 김현영 (경상국립대학교 식품영양학과)
  • Received : 2022.10.29
  • Accepted : 2022.12.09
  • Published : 2022.12.30

Abstract

Objectives: In this study, we investigated physicochemical characteristics and antioxidant activity of Artemisia argyi H. fermented with lactic acid bacteria. Methods: The A. argyi water extract was fermented using lactic acid bacteria isolated from kimchi at 30℃ for 96 h. To evaluate the physicochemical characteristics, we investigated pH, total acidity, viable cells, free sugars, free organic acids, and free amino acids contents during fermentation. In addition, we examined antioxidant activity of fermented Artemisia argyi H. by measurement of 2,2-diphenyl-1-(2,4,6-trinitrophenyl)-hydrazinyl (DPPH) and 2,2'-azubi-bus-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) scavenging activities. Results: During fermentation time, pH of fermented A. argyi was decreased from 4.57 to 3.22, and total acidity was increased from 0.39% to 1.63%. The number of lactic acid bacteria fermented A. argyi was increased from 1.28×107 CFU/ml to 3.75×108 CFU/ml during fermentation time. The free sugars of fermented A. argyi were confirmed glucose and sucrose. In addition, the organic acid content of fermented A. argyi was the highest in oxalic acid and lactic acid. In the composition of free amino acids, content of ornithine increased from 4.4 mg/100 g to 18.8 mg/100 g compared with non-fermented A. argyi. Furthermore, DPPH and ABTS+ radical scavenging activities of fermented A. argyi increased in a dose-dependent manner. Conclusions: In conclusion, our data suggest that lactic acid fermentation of A. argyi could be used as a functional food for antioxidants.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1F1A1061542).

References

  1. Brieger K, Schiavone S, Miller FJ Jr, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012 ; 142 : w13659.
  2. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004 ; 55 : 373-99. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  3. Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016 ; 148 : 183-93. https://doi.org/10.1016/j.lfs.2016.02.002
  4. Tonnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J Alzheimers Dis. 2017 ; 57(4) : 1105-21. https://doi.org/10.3233/JAD-161088
  5. Perez-Torres I, Castrejon-Tellez V, Soto ME, Rubio-Ruiz ME, Manzano-Pech L, Guarner-Lans V. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci. 2021 ; 22(4) : 1786.
  6. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017 ; 16(1) : 120.
  7. Serafini M, Peluso I. Functional foods for health: the interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Curr Pharm Des. 2016 ; 22(44) : 6701-15. https://doi.org/10.2174/1381612823666161123094235
  8. Zhou DD, Luo M, Shang A, Mao QQ, Li BY, Gan RY, et al. Antioxidant food components for the prevention and treatment of cardiovascular diseases: effects, mechanisms, and clinical studies. Oxid Med Cell Longev. 2021 ; 2021 : 6627355.
  9. Mangge H, Ciardi C, Becker K, Strasser B, Fuchs D, Gostner JM. Influence of antioxidants on leptin metabolism and its role in the pathogenesis of obesity. Adv Exp Med Biol. 2017 ; 960 : 399-413. https://doi.org/10.1007/978-3-319-48382-5_17
  10. Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 2017 ; 22(8) : 1255.
  11. Mathur H, Beresford TP, Cotter PD. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients. 2020 ; 12(6) : 1679.
  12. Lee HJ, Park SE, Choi JH, Kim KM. Biological activity of Brassica oleracea var. capitate fermented with Lactobacillus plantarum. Korean J Food Preserv. 2022 ; 29 : 241-53. https://doi.org/10.11002/kjfp.2022.29.2.241
  13. Jeon JM, Choi SK, Kim YJ, Jang SJ, Cheon JW, Lee HS. Antioxidant and antiaging effect of ginseng berry extract fermented by lactic acid bacteria. J Soc Cosmet Scientists Korea. 2011 ; 37(1) : 75-81.
  14. Lee JB, Bae JS, Son IK, Jeon CP, Lee EH, Joo WH, et al. Antioxidant and ACE inhibiting activities of sugared-buchu (Allium ampeloprasum L. var. porum J. Gay) fermented with lactic acid bacteria. J Life Sci. 2014 ; 24(6) : 671-6. https://doi.org/10.5352/JLS.2014.24.6.671
  15. Park JP, Kang SA. Antioxidant effect and blood pressure control ability of Lactobacillus fermented Gastrodia elata BI. In hypertension model rats (SHR). Korean J Food Nutr. 2020 ; 33(5) : 493-504.
  16. Hwang YJ, Pan JH, Hwang HJ, Lee SJ, Choi DH, Kim JK, et al. Fermentation of Chestnut (Catanea crenata Sieb) Inner shell enhances anti-obesity effects in 3T3-L1 and C3H10T1/2 adipocytes. J Med Food. 2021 ; 24(5) : 441-51. https://doi.org/10.1089/jmf.2021.K.0017
  17. Kim DG, Kang JR, Shin JH, Kang MJ. Biological activities of various solvent extracts of Seomaeyakssuk (Artemisia argyi H.). J Life Sci. 2019 ; 29(11) : 1241-50.
  18. Kim DG, Kang MJ, Shin JH. Hepatoprotective effect of Sumaeyakssuk (Artemisia argyi H.) extract on LPS-mediated inflammatory response. J Life Sci. 2016 ; 26(11) : 1282-8. https://doi.org/10.5352/JLS.2016.26.11.1282
  19. Lee HJ, Lim MH. Whitening activities of extracts of Seomaeyakssuk (Artemisia argyi H.) J Korean Appl Sci Technol. 2020 ; 37(2) : 241-9.
  20. Kang JY, Lee DS, Park SK, Ha JS, Kim JM, Ha GJ, et al. Cognitive function of Artemisia argyi H. fermented by Monascus purpureusunder TMT-induced learning and memory deficits in ICR mice. Evid-Based Complement Alternat Med. 2017 ; 2017 : 5809370.
  21. Shin JY, Kang JR, Shin JH, Seo WT, Byun HU, Choi JS, et al. Effects of Seomaeyakssuk (Artemisia argyi H.) vinegar on lipid metabolism in rats fed a high-fat and high-cholesterol diet. J Korean Soc Food Sci Nutr. 2017 ; 46(7) : 779-89.
  22. Shin JY, Shin JH, Kang MJ, Choi MH, Park HR, Choi JS, et al. Physicochemical characteristics of lactic acid fermented Seomaeyaksuk (Aremisia argyi H.) sikhye added with different addition ratio of MSG. Korean J Food Preserv. 2017 ; 24(2) : 254-65. https://doi.org/10.11002/kjfp.2017.24.2.254
  23. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021 ; 38(7) : 3022-7. https://doi.org/10.1093/molbev/msab120
  24. Yoon JH, Seo WT, Shin YK, Kho YH, Kang KH, Park YH. Paenibacillus chinjuensis sp. nov., a novel exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol. 2002 ; 52(Pt 2) : 415-21. https://doi.org/10.1099/00207713-52-2-415
  25. Lee CW, Ko CY, Ha DM. Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor J Appl Microbiol Biotechnol. 1992 ; 20 : 102-9.
  26. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958 ; 181(4617) : 1199-200. https://doi.org/10.1038/1811199a0
  27. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying im-proved ABTS radical cation decolorization assay. Free Radical Bio Med. 1999 ; 26(9-10) : 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  28. Hwang IW, Lee SD, Hwang WI. A study on the nutritional effects in rats by feeding basal diet supplemented with mug-wort powder. J Korean Soc Food Nutr. 1985 ; 14 : 123-30.
  29. Hong M, Kim M, Kim S. Biological activities of sweet wormwood (Artemisia annua L.). Weed Turf Sci. 2021 ; 10(3) : 243-63. https://doi.org/10.5660/WTS.2021.10.3.243
  30. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK. Phytochemistry and pharmacological activity of the genus Artemisia. Arch Pharm Res. 2021 ; 44(5) : 439-74. https://doi.org/10.1007/s12272-021-01328-4
  31. Lim DW, Kim YT, Jang YJ, Kim YE, Han D. Anti-obesity effect of Artemisia capillaris extracts in high-fat diet-induced obese rats. Molecules. 2013 ; 18(8) : 9241-52. https://doi.org/10.3390/molecules18089241
  32. Kim YH, Park CM, Yoon GA. Amelioration of metabolic disturbances and adipokine dysregulation by mugwort (Artemisia princeps P.) extract in high-fat diet-induced obese rats. J Nutr Health. 2016 ; 49(6) : 411-9. https://doi.org/10.4163/jnh.2016.49.6.411
  33. Ha GJ, Lee YH, Kim NK, Shon GM, Rho CW, Jeong HR, et al. Nutritional chemical composition in the different parts of Artemisia argyi H. J Agric Life Sci. 2012 ; 46 : 155-64.
  34. Terefe NS, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr. 2020 ; 60(17) : 2887-913. https://doi.org/10.1080/10408398.2019.1666250
  35. Sanlier N, Gokcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr. 2019 ; 59(3) : 506-27. https://doi.org/10.1080/10408398.2017.1383355
  36. Lee SJ, Bose S, Lee SJ, Jeong JE, Koo BS, Kim DI, et al. Effects of fermented lotus extracts on the differentiation in 3T3-L1 preadipocytes. J Korean Med Obes Res. 2013 ; 13(2) : 74-83.
  37. Kim GH, Bae EK. Lactic acid bacteria for the preservation of fruit and vegetables. Korean J Food Preserv. 1999 ; 6 : 245-54.
  38. Chang JH, Shim YY, Cha SK, Chee KM. Probiotic characteristics of lactic acid bacteria isolated from kimchi. J Appl Microbiol. 2010 ; 109(1) : 220-30. https://doi.org/10.1111/j.1365-2672.2009.04648.x
  39. Song BN, Lee DB, Lee SH, Park BR, Choi JH, Kim YS, et al. Physicochemical properties and antioxidant activity of extract from Astragalus membranaceus Bunge leaf fermented with lactic acid bacteria. Korean J Medicinal Crop Sci. 2020 ; 28(6) : 428-34. https://doi.org/10.7783/KJMCS.2020.28.6.428
  40. Andersson R, Hedlund B. HPLC analysis of organic acids in lactic acid fermented vegetables. Z Lebensm Unters Forsch. 1983 ; 176(6) : 440-3. https://doi.org/10.1007/BF01042558
  41. Tavaria FK, Dahl S, Carballo FJ, Malcata FX. Amino acid catabolism and generation of volatiles by lactic acid bacteria. J Dairy Sci. 2002 ; 85 : 2462-70. https://doi.org/10.3168/jds.S0022-0302(02)74328-2
  42. Na Y, Park SH. Fermentation of wheat bran through lactic acid bacteria: changes in flavor components and free amino acids and potential applications in baking. Korean J Food Sci Technol. 2020 ; 52(5) : 524-8. https://doi.org/10.9721/KJFST.2020.52.5.524
  43. Hwang H, Lee JH. Characterization of arginine catabolism by lactic acid bacteria isolated from Kimchi. Molecules. 2018 ; 23(11) : 3049.
  44. Goh ET, Stokes CS, Sidhu SS, Vilstrup H, Gluud LL, Morgan MY. L-ornithine L-aspartate for prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev. 2018 ; 5(5) : CD012410.
  45. Canbay A, Sowa JP. L-Ornithine L-aspartate (LOLA) as a novel approach for therapy of non-alcoholic fatty liver disease. Drugs. 2019 ; 79(Suppl 1) : 39-44. https://doi.org/10.1007/s40265-018-1020-5
  46. Lee CY, Kim KM, Son HS. Optimal extraction conditions to produce rosemary extracts with higher phenolic content and antioxidant activity. Korean J Food Sci Technol. 2013 ; 45 : 501-7. https://doi.org/10.9721/KJFST.2013.45.4.501