Browse > Article

Fed-batch Culture of Enterococcus faecalis RKY1 for L[+]-Lactic Acid Production  

Wee Young Jung (School of Biological Sciences and Technology, Chonnam National University)
Kim Jin Nam (Department of Material Chemical and Biochemical Engineering, Chonnam National University)
Yun Jong Sun (BioHelix)
Park Don Hee (School of Biological Sciences and Technology, Chonnam National University)
Kim Do Man (School of Biological Sciences and Technology, Chonnam National University)
Ryu Hwa Won (School of Biological Sciences and Technology, Chonnam National University)
Publication Information
KSBB Journal / v.19, no.5, 2004 , pp. 410-414 More about this Journal
Abstract
Fed-batch cultures of Enterococcus faecalis RKY1 were performed to maximize the L(+)-Iactic acid concentration in the bioreactor. The highest lactic acid concentration was obtained at around 225 g/L by intermittent feeding the concentrated glucose media containing 500 g/L of glucose and 15 g/L (or 75 g/L) of yeast extract. However, in all fed-batch cultures, volumetric productivities of lactic acid gradually decreased due to the inhibitory effect of lactic acid produced during the fermentation. The highest value of lactic acid concentration obtained in this work corresponded to around 1.5-fold increase compared with conventional batch fermentation.
Keywords
Lactic acid; fed-batch; fermentation; Enterococcus faecalis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tay, A. and S. T. Yang (2002), Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor, Biotechnol. Bioeng. 80, 1-12
2 Ryu, H. W., K. H. Kang, and J. S. Yun (1999), Bioconversion of fumarate to succinate using glycerol as a carbon source, Appl. Biochem. Biotechnol. 77/79, 511-520
3 Ryu, H. W., K. H. Kang, J. G. Pan, and H. N. Chang (2001), Characteristics and glycerol metabolism of fumarate-reducing Enterococcus faecalis RKY1, Biotechnol. Bioeng. 72, 119-124
4 Assinder, S., L. V. J. Eynstone, R. P. Shellis, and G. H. Dibdin (1995), Inhibition of acid production in Streptococcus mutans R9: inhibition constants and reversibility, FEMS Microbiol. Lett. 134, 287-292
5 Oh, H., Y. J. Wee, J. S. Yun, and H. W. Ryu (2003), Lactic acid production through cell-recycle repeated-batch bioreactor, Appl. Biochem. Biotechnol. 105/108, 603-613
6 Vink, E. T. H., K. R. R$\bago, D. A. Glassner, and P. R. Gruber (2003), Applications of life cycle assessment to NatureWorks$^TM$ polylactide(PLA) production, Polym. Degrad. Stabil. 80, 403-419.
7 Bai, D. M., S. Z. Li, and F. Q. Lin (2004), Production of ammonium lactate by fed-batch fermentation of Rhizopus oryzae from corncob hydrolyzate, Chem. Res. Chin. Univ. 20, 403-406
8 Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank (1995), Technological and economic potential of poly(lactic acid) and lactic acid derivatives, FEMS Microbiol. Rev. 16, 221-231
9 Bai, D. M., Q. Wei, Z. H. Yan, X. M. Zhao, X. G. Li, and S. M. Xu (2003), Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid, Biotechnol. Lett. 25, 1833-1835
10 Fu, W. and A. P. Mathews (1999), Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen, Biochem. Eng. J. 3, 163-170
11 Goncalves, L. M. D., A. Ramos, J. S. Almeida, A. M. R. B. Xavier, and M. J. T. Carrondo (1997), Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus, Appl. Microbiol. Biotechnol. 48, 346-350
12 Yun, J. S., Y. J. Wee, and H. W. Ryu (2003), Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1, Enzyme Microb. Technol. 33, 416-423.
13 Benninga, H. (1990), A History of Lactic Acid Making, pp. 1-59, Kluwer Academic Publishers, Dordrecht
14 Wee, Y. J., J. S. Yun, D. H. Park, and H. W. Ryu (2004), Biotechnological production of L(+)-lactic acid from wood hydrolyzate by batch fermentation of Enterococcus faecalis, Biotechnol. Lett. 26, 71-74
15 Yun, J. S. and H. W. Ryu (2001), Lactic acid production and carbon catabolite repression from single and mixed sugars using Enterococcus faecalis RKY1, Process Biochem. 37, 235-240
16 Magni, C., D. Memndoza, W. N. Konings, and J. S. Lolkema (1999), Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH, J. Bacteriol. 181, 1451-1457
17 Davison, B. E., R. M. Llanos, M. R. Cancilla, N. C. Redmann, and A. J. Hillier (1995), Current research on the genetics of lactic acid production in lactic acid bacteria, Int. Dairy J. 5, 763-784
18 VickRoy, T. B. (1985), Lactic acid, In Comprehensive Biotechnology Vol. 3, Moo-Young M., Ed., pp. 761-776, Pergamon Press, New York
19 Lunt, J. (1998), Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stabil. 59, 145-152
20 Wilke, D. (1999), Chemicals from biotechnology: molecular plant genetics will challenge the chemical and the fermentation industry, Appl. Microbiol. Biotechnol. 52, 135-145
21 Wee, Y. J., J. S. Yun, and H. W. Ryu (2002), Characteristics of succinic acid production by Enterococcus faecalis RKY1 immobilized in a hollow fiber bioreactor, Kor. J. Biotechnol. Bioeng. 17, 182-188