• Title/Summary/Keyword: lactic culture,

Search Result 602, Processing Time 0.026 seconds

Current Status of EM (Effective Microorganisms) Utilization (유용미생물 (EM, Effective Microorganisms)의 활용 현황)

  • Moon, Yun-Hee;Lee, Kwang-Bae;Kim, Young-Jun;Koo, Yoon-Mo
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.365-373
    • /
    • 2011
  • Effective Microorganisms (EM), a fermented medium developed by Professor Higa at the University of the Ryukyus, is a mixed culture containing dozens of microorganisms which are beneficial to nature including people, animals, plants and many microbial species in environment. EM is known to contain more than 80 kinds of anaerobic or aerobic microbes including photosynthetic bacteria, lactic acid bacteria, yeast, actinomycetes, fungi and so on, with yeast, lactic acid bacteria and photosynthetic bacteria as the main species of EM. Antioxidant effect generated by the concert of complex coexistence and coprosperity among these microbes is considered to be the main source of EM benefits. Currently, EM is earning an increasing attention with applications in agriculture, forestry, animal husbandry, fisheries, environment and medicine among others. At the same time, however, a quantitative interpretation of EM system based on a mixed culture model needs efforts from biochemical engineers for efficient production and further promotion of EM. In this paper, we describe the functions of major microbes in EM and current researches and applications of EM in agriculture, forestry, animal husbandry, fisheries, environment and medicine.

Influence of Culture Media Formulated with Agroindustrial Wastes on the Antimicrobial Activity of Lactic Acid Bacteria

  • Linares-Morales, Jose R.;Salmeron-Ochoa, Ivan;Rivera-Chavira, Blanca E.;Gutierrez-Mendez, Nestor;Perez-Vega, Samuel B.;Nevarez-Moorillon, Guadalupe V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.64-71
    • /
    • 2022
  • The discarding of wastes into the environment is a significant problem for many communities. Still, food waste can be used for lactic acid bacteria (LAB) growth. Here, we evaluated three growth media equivalent to de Mann Rogosa Sharpe (MRS), using apple bagasse, yeast waste, fish flour, forage oats, and cheese whey. Cell-free supernatants of eight LAB strains were tested for antimicrobial activity against nine indicator microorganisms. The supernatants were also evaluated for protein content, reducing sugars, pH, and lactic acid concentration. Cell-free supernatants from fish flour broth (FFB) LAB growth were the most effective. The strain Leuconostoc mesenteroides PIM5 presented the best activity in all media. L. mesenteroides CAL14 completely inhibited L. monocytogenes and strongly inhibited Bacillus cereus (91.1%). The strain L. mesenteroides PIM5 consumed more proteins (77.42%) and reducing sugars (56.08%) in FFB than in MRS broth (51.78% and 30.58%, respectively). Culture media formulated with agroindustrial wastes positively improved the antimicrobial activity of selected LAB, probably due to the production of antimicrobial peptides or bacteriocins.

Probiotication of Tomato Juice by Lactic Acid Bacteria

  • Yoon Kyung Young;Woodams Edward E.;Hang Yong D
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.315-318
    • /
    • 2004
  • This study was undertaken to determine the suitability of tomato juice as a raw material for production of probiotic juice by four lactic acid bacteria (Latobacillus acidophilus LA39, Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Tomato juice was inoculated with a 24­h-old culture and incubated at $30^{\circ}C$. Changes in pH, acidity, sugar content, and viable cell counts dur­ing fermentation under controlled conditions were measured. The lactic acid cultures reduced the pH to 4.1 or below and increased the acidity to $0.65\%$ or higher, and the viable cell counts (CFU) reached nearly 1.0 to $9.0\times10^9/ml$ after 72 h fermentation. The viable cell counts of the four lactic acid bacteria in the fermented tomato juice ranged from $10^6\;to\;10^8\;CFU/ml$ after 4 weeks of cold storage at $4^{\circ}C$. Pro­biotic tomato juice could serve as a health beverage for vegetarians or consumers who are allergic to dairy products.

Characterization and Antibacterial Activity of Lactobacillus casei HK-9 Isolated from Korean Rice Wine, Makgeolli (막걸리에서 분리한 젖산세균인 Lactobacillus casei HK-9의 특성 및 항균 활성)

  • Baek, Hyun;Choi, Moon-Seup;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • The purpose of this work was to examine the antibacterial activity derived from a lactic acid bacterium isolated from korean rice wine, called makgeolli. Various physiological and biochemical properties of this strain were characterized. Both the BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were utilized for identification, and the strain was designated as Lactobacillus casei HK-9, and registered in GenBank as [JQ951606]. Growth rate, production of organic acids (e.g., lactic acid and acetic acid), and pH changes during growth were monitored. The maximum concentrations of lactic acid and acetic acid were approximately 576 mM and 199 mM, respectively, and pH was changed from 7.00 to 3.74 after 72 h of incubation. HPLC was used to confirm the production of lactic acid and acetic acid. Significant antimicrobial activity of the concentrated supernatant was demonstrated against various food-poison causing bacteria (e.g., Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli, Salmonella enteritidis). Ethanol tolerance of L. casei HK-9 showed up to 12% of ethanol within the culture.

Fermentative characteristics of wheat bran direct-fed microbes inoculated with starter culture

  • Kim, Jo Eun;Kim, Ki Hyun;Kim, Kwang-Sik;Kim, Young Hwa;Kim, Dong Woon;Park, Jun-Cheol;Kim, Sam-Chul;Seol, Kuk-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.387-393
    • /
    • 2016
  • This study was conducted to determine the fermentative characteristics of wheat bran inoculated with a starter culture of direct-fed microbes as a microbial wheat bran (DMWB) feed additive. Wheat bran was prepared with 1% (w/w, 0.5% Lactobacillus plantarum and 0.5% of Saccharomyces cerevisiae) starter culture treatment (TW) or without starter culture as a control (CW). Those were fermented under anaerobic conditions at $30^{\circ}C$ incubation for 3 days. Samples were taken at 0, 1, 2, and 3 days to analyze chemical composition, microbial growth, pH, and organic acid content. Chemical composition was not significantly different between CW and TW (p > 0.05). In TW, the number of lactic acid bacteria and yeast increased during the 3 days of fermentation (p < 0.05) and the population of lactic acid bacteria was significantly higher than in CW (p < 0.05). After 3 days, the number of yeast in TW was $7.50{\pm}0.07log\;CFU/g$, however, no yeast was detected in CW (p < 0.05). The pH values of both wheat bran samples decreased during the 3 days of fermentation (p < 0.05), and TW showed significantly lower pH than CW after 3 days of fermentation (p < 0.05). Contents of lactic acid and acetic acid increased significantly at 3rd day of fermentation in TW. However, no organic acids were generated in CW during testing period. These results suggest that 3 days of fermentation at $37^{\circ}C$ incubation after the inoculation wheat bran with starter culture makes it possible to produce a direct-feed with a high population of lactic acid bacteria at more than $10^{11}CFU/g$.

Enhancement of L-Lactic Acid Production in Lactobacillus casei from Jerusalem Artichoke Tubers by Kinetic Optimization and Citrate Metabolism

  • Ge, Xiang-Yang;Qian, He;Zhang, Wei-Guo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • Efficient L-lactic acid production from Jerusalem artichoke tubers, by Lactobacillus casei G-02, using simultaneous saccharification and fermentation (SSF) in a fed-batch culture, is demonstrated. A kinetic analysis of the SSF revealed that the inulinase activity was subjected to product inhibition, whereas the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellular NADH oxidase (NOX) activity was enhanced by the citrate metabolism, which dramatically increased the carbon flux of the Embden-Meyerhof-Parnas (EMP) pathway, along with the production of ATP. As a result, when the SSF was carried out at $40^{\circ}C$ after an initial hydrolysis of 1 h and included a sodium citrate supplement of 10 g/l, an L-lactic acid concentration of 141.5 g/l was obtained after 30 h, with a volumetric productivity of 4.7 g/l/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/l00 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with a high productivity from Jerusalem artichokes has not been reported previously, making G-02 a potential candidate for the economic production of L-lactic acid from Jerusalem artichokes on a commercial scale.

Effects of Ginseng Saponin Metabolites and Intestinal Health Active Ingredients of Vegetables Extracts and Fermented Lactic Acid Bacteria (비지터블 추출물 및 유산균 발효물의 진생사포닌 대사산물과 장건강 활성성분 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.943-951
    • /
    • 2022
  • In this study, 8 kinds of fruits and vegetables such as apples, pears and radishes were cut and hot water extracts and Steamed hot water extract from fruits and vegetables were prepared and used as experimental substrates. As a result of fermenting with 1% (W/V) red ginseng extract (W/V) and 8 types of lactic acid bacteria mixed starter added to the lactic acid bacteria fermented extract, the pattern and content of ginsenosides were almost unchanged in the fruit and vegetable extract group and the steam treatment group. However, in the lactic acid bacteria fermented group, the TLC pattern was changed according to the fermentation process and treatment, and the content of ginsenosides converted into Rg3(S) and Rg5 increased. No change in the number of lactic acid bacteria (cfu) was observed in all four types of fruit and vegetable extracts. The number of lactic acid bacteria CFU was slightly decreased in the four fermented groups of fruit and vegetable extracts, but the growth inhibitory effect of beneficial bacteria was not significant. The growth inhibitory effect of the three harmful bacteria was not affected by the growth of E. coli and Pseudomonas in the four fruit and vegetable extracts. However, the proliferation of Salmonella was inhibited, which was confirmed as the growth inhibitory effect of the fruit and vegetable extract regardless of whether the steamed hot water extract or red ginseng extract was added.

Strain Selection and Optimization of Mixed Culture Conditions for Lactobacillus pentosus K1-23 with Antibacterial Activity and Aureobasidium pullulans NRRL 58012 Producing Immune-Enhancing β-Glucan

  • Sekar, Ashokkumar;Kim, Myoungjin;Jeong, Hyeong Chul;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.697-706
    • /
    • 2018
  • Lactobacillus pentosus K1-23 was selected from among 25 lactic acid bacterial strains owing to its high inhibitory activity against several pathogenic bacteria, including Escherichia coli, Salmonella typhimurium, S. gallinarum, Staphylococcus aureus, Pseudomonas aeruginosa, Clostridium perfringens, and Listeria monocytogenes. Additionally, among 13 strains of Aureobasidium spp., A. pullulans NRRL 58012 was shown to produce the highest amount of ${\beta}$-glucan ($15.45{\pm}0.07%$) and was selected. Next, the optimal conditions for a solid-phase mixed culture with these two different microorganisms (one bacterium and one yeast) were determined. The optimal inoculum sizes for L. pentosus and A. pullulans were 1% and 5%, respectively. The appropriate inoculation time for L. pentosus K1-23 was 3 days after the inoculation of A. pullulans to initiate fermentation. The addition of 0.5% corn steep powder and 0.1% $FeSO_4$ to the basal medium resulted in the increased production of lactic acid bacterial cells and ${\beta}$-glucan. The following optimal conditions for solid-phase mixed culture were also statistically determined by using the response surface method: $37.84^{\circ}C$, pH 5.25, moisture content of 60.82%, and culture time of 6.08 days for L. pentosus; and $24.11^{\circ}C$, pH 5.65, moisture content of 60.08%, and culture time of 5.71 days for A. pullulans. Using the predicted optimal conditions, the experimental production values of L. pentosus cells and ${\beta}$-glucan were $3.15{\pm}0.10{\times}10^8CFU/g$ and $13.41{\pm}0.04%$, respectively. This mixed culture may function as a highly efficient antibiotic substitute based on the combined action of its anti-pathogenic bacterial and immune-enhancing activities.

Selection of indigenous starter culture for safety and its effect on reduction of biogenic amine content in Moo som

  • Tangwatcharin, Pussadee;Nithisantawakhup, Jiraroj;Sorapukdee, Supaluk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1580-1590
    • /
    • 2019
  • Objective: The aims of this study were to select one strain of Lactobacillus plantarum (L. plantarum) for a potential indigenous safe starter culture with low level antibiotic resistant and low biogenic amine production and evaluate its effect on biogenic amines reduction in Moo som. Methods: Three strains of indigenous L. plantarum starter culture (KL101, KL102, and KL103) were selected based on their safety including antibiotic resistance and decarboxylase activity, and fermentation property as compared with a commercial starter culture (L. plantarum TISIR543). Subsequently, the effect of the selected indigenous safe starter culture on biogenic amines formation during Moo som fermentation was studied. Results: KL102 and TISIR 543 were susceptible to penicillin G, tetracycline, chloramphenicol, erythromycin, gentamycin, streptomycin, vancomycin, ciprofloxacin and trimethoprim (MIC90 ranging from 0.25 to $4{\mu}g/mL$). All strains were negative amino acid-decarboxylase for lysis of biogenic amines in screening medium. For fermentation in Moo som broth, a relatively high maximum growth rate of KL102 and TISIR543 resulted in a generation time than in the other strains (p<0.05). These strain counts were constant during the end of fermentation. Similarly, KL102 or TISIR543 addition supported increases of lactic acid bacterial count and total acidity in Moo som fermentation. For biogenic amine reduction, tyramine, putrescine, histamine and spermine contents in Moo som decreased significantly by the addition KL102 during 1 d of fermentation (p<0.05). In final product, histamine, spermine and tryptamine contents in Moo som inoculated with KL102 were lower amount those with TISIR543 (p<0.05). Conclusion: KL102 was a suitable starter culture to reduce the biogenic amine formation in Moo som.

Analysis of Acid Stress Response in Streptococcus mutans KCTC 3065 (산에 대한 Streptococcus mutans KCTC 3065의 스트레스 반응에 관한 연구)

  • Kang, Kyung-Hee;Kim, Ji-Young
    • Journal of dental hygiene science
    • /
    • v.7 no.1
    • /
    • pp.21-24
    • /
    • 2007
  • Dental caries is initiated by the acid accumulated in dental plaque. Streptococcus mutans, one of a major causal agents of dental caries, is component of the dental plaque and produces various organic acids such as lactic acid as the end-product of glycolysis. As a consequence, we investigated the acid stress response of S. mutans KCTC 3065 in this study. The addition of lactic acid to the growth media had a concentration-dependent effect on the growth of S. mutans. S. mutans exhibited higher maximum culture OD compared with the more acidic growth pH values. At treatment of centration of 20 mmol/L lactic acid in the mid-log phage, cell growth was reduced to 40% relative to the control. The following results were obtained with the treatment of cells with a concentration of 20 mmol/L lactic acid in the mid-log phage for 2hrs: Analysis of fatty acids extracted from cells showed that growth at a concentration of 20 mmol/L lactic acid resulted in changes in $C_{14:0}$, $C_{16:0}$, $C_{18:0}$ and $C_{18:1}$ fatty acids. Protein profiles investigated by SDS-PAGE showed that approximately 70, 60, 45, 40 and 23 kDa proteins were highly expressed in S. mutans KCTC 3065.

  • PDF