Browse > Article
http://dx.doi.org/10.4014/jmb.2107.07030

Influence of Culture Media Formulated with Agroindustrial Wastes on the Antimicrobial Activity of Lactic Acid Bacteria  

Linares-Morales, Jose R. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
Salmeron-Ochoa, Ivan (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
Rivera-Chavira, Blanca E. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
Gutierrez-Mendez, Nestor (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
Perez-Vega, Samuel B. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
Nevarez-Moorillon, Guadalupe V. (Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua.)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.1, 2022 , pp. 64-71 More about this Journal
Abstract
The discarding of wastes into the environment is a significant problem for many communities. Still, food waste can be used for lactic acid bacteria (LAB) growth. Here, we evaluated three growth media equivalent to de Mann Rogosa Sharpe (MRS), using apple bagasse, yeast waste, fish flour, forage oats, and cheese whey. Cell-free supernatants of eight LAB strains were tested for antimicrobial activity against nine indicator microorganisms. The supernatants were also evaluated for protein content, reducing sugars, pH, and lactic acid concentration. Cell-free supernatants from fish flour broth (FFB) LAB growth were the most effective. The strain Leuconostoc mesenteroides PIM5 presented the best activity in all media. L. mesenteroides CAL14 completely inhibited L. monocytogenes and strongly inhibited Bacillus cereus (91.1%). The strain L. mesenteroides PIM5 consumed more proteins (77.42%) and reducing sugars (56.08%) in FFB than in MRS broth (51.78% and 30.58%, respectively). Culture media formulated with agroindustrial wastes positively improved the antimicrobial activity of selected LAB, probably due to the production of antimicrobial peptides or bacteriocins.
Keywords
LAB; food waste residues; by-product; fermentation; antimicrobial; pathogens;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Veeravalli SS, Mathews AP. 2018. Exploitation of acid-tolerant microbial species for the utilization of low-cost whey in the production of acetic acid and propylene glycol. Appl. Microbiol. Biotechnol. 102: 8023-8033.   DOI
2 Mamma D, Topakas E, Vafiadi C, Christakopoulos P. 2009. Biotechnological Potential of Fruit Processing Industry Residues. In Singh nee' Nigam P, Pandey A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht.
3 Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. 2010. The proteolytic system of lactic acid bacteria revisited?: a genomic comparison. BMC Genomics 11: 36.   DOI
4 Nediani M, Garcia L, Saavedra L, Martinez S, Lopez Alzogaray S, Fadda S. 2017. Adding value to goat meat: biochemical and technological characterization of autochthonous lactic acid bacteria to achieve high-quality fermented sausages. Microorganisms 5: 26.   DOI
5 Vera Pingitore E, Todorov SD, Sesma F, Gombossy de Melo Franco BD. 2012. Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese. Food Microbiol. 32: 38-47.   DOI
6 Theolier J, Hammami R, Labelle P, Fliss I, Jean J. 2013. Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. J. Funct. Foods 5: 706-714.   DOI
7 Wulijideligen, Asahina T, Hara K, Arakawa K, Nakano H, Miyamoto T. 2012. Production of bacteriocin by Leuconostoc mesenteroides 406 isolated from Mongolian fermented mare's milk, airag. Anim. Sci. J. 83: 704-711.   DOI
8 Bartkiene E, Lele V, Sakiene V, Zavistanaviciute P, Ruzauskas M, Bernatoniene J, et al. 2019. Improvement of the antimicrobial activity of lactic acid bacteria in combination with berries/fruits and dairy industry by-products. J. Sci. Food Agric. 99: 3992-4002.   DOI
9 Linares-Morales JR, Cuellar-Nevarez GE, Rivera-Chavira BE, Gutierrez-Mendez N, Perez-Vega SB, Nevarez-Moorillon GV. 2020. Selection of lactic acid bacteria isolated from fresh fruits and vegetables based on their antimicrobial and enzymatic activities. Foods 9: 1399.   DOI
10 dos Santos Mathias TR, Alexandre VMF, Cammarota MC, de Mello PPM, Servulo EFC. 2015. Characterization and determination of brewer's solid wastes composition. J. Inst. Brew. 121: 400-404.   DOI
11 Bolarinwa IF, Orfila C, Morgan MRA. 2015. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chem. 170: 437-442.   DOI
12 Boumaiza MA, Colarusso E, Parrilli E, Garcia-Fruitos A, Casillo A, Aris MM, Corsaro D, et al. 2018. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microb. Cell Fact. 17: 1-9.   DOI
13 Ryan MP, Walsh G. 2016. The biotechnological potential of whey. Rev. Environ. Sci. Biotechnol. 15: 479-498.   DOI
14 Sabo SS, Converti A, Ichiwaki S, Oliveira RPS. 2019. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J. Dairy Sci. 102: 87-99.   DOI
15 Food and Agriculture Organization of the United Nations. 2016. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all http://www.fao.org/3/a-i5555e.pdf. Accessed Oct. 10, 2020.
16 Mathias TR, de Aguiar PF, Silva JB, de Mello PPM, Servulo EFC. 2017. Brewery wastes reuse for protease production by lactic acid bacteria fermentation. Food Technol. Biotechnol. 55: 218-224.
17 Bravo S, Morales M, del Monaco SM, Caballero AC. 2019. Apple bagasse as a substrate for the propagation of Patagonian wine yeast biomass. J. Appl. Microbiol. 126: 1414-1425.   DOI
18 Bustos G, Moldes AB, Cruz JM, Dominguez JM. 2004. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J. Agric. Food Chem. 52: 801-808.   DOI
19 Wang Y, Tashiro Y, Sonomoto K. 2015. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J. Biosci. Bioeng. 119: 10-18.   DOI
20 Pessione A, Zapponi M, Mandili G, Fattori P, Mangiapane E, Mazzoli R, et al. 2014. Enantioselective lactic acid production by an Enterococcus faecium strain showing potential in agro-industrial waste bioconversion: physiological and proteomic studies. J. Biotechnol. 173: 31-40.   DOI
21 Ruthu, Murthy PS, Rai AK, Bhaskar N. 2014 Fermentative recovery of lipids and proteins from freshwater fish head waste with reference to antimicrobial and antioxidant properties of protein hydrolysate. J. Food Sci. Technol. 51: 1884-1892.   DOI
22 Worsztynowicz P, Bialas W, Grajek W. 2020. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chem. 312: 126035.   DOI
23 Kasmi M, Hamdi M, Trabelsi L. 2017. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. Environ. Sci. Pollut. Res. 24: 13604-13613.   DOI
24 Gullon B, Yanez R, Alonso JL, Parajo JC. 2008. l-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour. Technol. 99: 308-319.   DOI
25 Vazquez JA, Meduina A, Duran AI, Nogueira M, Fernandez-Compas A, Perez-Martin RI, et al. 2019. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Mar. Drugs 17: 139.   DOI
26 Chalermthai B, Chan WY, Bastidas-Oyanedel JR, Taher H, Olsen BD, Schmidt JE. 2019. Preparation and characterization of whey protein-based polymers produced from residual dairy streams. Polymers (Basel) 11: 1-11.   DOI
27 Leroy F, De Winter T, Adriany T, Neysens P, De Vuyst L. 2006. Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int. J. Food Microbiol. 112: 102-111.   DOI
28 Castillo-Castillo Y, Ruiz-Barrera O, Burrola-Barraza ME, Marrero-Rodriguez Y, Salinas-Chavira J, Angulo-Montoya C, et al. 2016. Isolation and characterization of yeasts from fermented apple bagasse as additives for ruminant feeding. Brazilian J. Microbiol. 47: 889-895.   DOI
29 Association of Official Analytical Chemists, Official Methods of Analysis. 2000 17th Ed., AOAC International, Gaithersburg, MD.
30 Miller G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
31 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
32 Zhang M, Wang X, Cui M, Wang Y, Jiao Z, Tan Z. 2018. Ensilage of oats and wheatgrass under natural alpine climatic conditions by indigenous lactic acid bacteria species isolated from high-cold areas. PLoS One 13: e0192368.   DOI
33 Vazquez JA, Gonzalez MP, Murado MA. 2004. Peptones from autohydrolysed fish viscera for nisin and pediocin production. J. Biotechnol. 112: 299-311.   DOI
34 Filannino P, Di Cagno R, Gobbetti M. 2018. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Curr. Opin. Biotechnol. 49: 64-72.   DOI
35 Kafilzadeh F, Heidary N. 2013. Chemical composition, in vitro digestibility and kinetics of fermentation of whole-crop forage from 18 different varieties of oat (Avena sativa L.). J. Appl. Anim. Res. 41: 61-68.   DOI
36 Metsoviti M, Paramithiotis S, Drosinos EH, Skandamis PN, Galiotou-Panayotou M, Papanikolaou S. 2011. Biotechnological valorization of low-cost sugar-based media for bacteriocin production by Leuconostoc mesenteroides E131. N. Biotechnol. 28: 600-609.   DOI